• Title/Summary/Keyword: Long Bearing

Search Result 439, Processing Time 0.026 seconds

A Standard Application Study on Containership Cargo Hatch Cover Plastic Bearing Pad (Container선 Cargo Hatch Cover Plastic Bearing Pad 적용기준 연구)

  • Oh, Hoon-Taek;Ko, Jae-Cheol;Kang, Keun-Hyeog;Ban, Geong-Do
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2009.09a
    • /
    • pp.1-5
    • /
    • 2009
  • Recent growth in global economic situation has led dramatic increase in new buildings of large containerships. These increased new building orders have brought keen concerns of developing and improving the quality of design and increasing the productivity of the vessel in order to satisfy the ship Owner's various requirements. For the increment of productivity and quality of containership, the plastic type bearing pad of cargo hatch cover has been investigated intensively for years with the supplier of cargo hatch cover. The result of investigation showed that there are numbers of advantages for the Owner and Builder over the existing bronze bearing pads which are better corrosion resistance long life time, low friction coefficient, easy maintenance, easy installation, better production lead time and low maintenance cost.

  • PDF

Effect of Neem (Azadirachta indica) oil on the progressive growth of a spontaneous T cell lymphoma

  • Mallick, Sanjaya Kumar;Gupta, Vivekanand;Singh, Mahendra Pal;Vishvakarma, Naveen Kumar;Singh, Nisha;Singh, Sukh Mahendra
    • Advances in Traditional Medicine
    • /
    • v.7 no.5
    • /
    • pp.459-465
    • /
    • 2008
  • The present study was undertaken to investigate the effect of in vivo administration of neem oil intra-peritoneally (i.p.) to mice bearing a progressively growing transplantable T cell lymphoma of spontaneous origin, designated as Daltons lymphoma (DL), on the tumor growth. Mice were administered various doses of neem oil mixed in groundnut oil, which was used as a diluting vehicle or for administration to control DL-bearing mice. Administration of neem oil resulted in an acceleration of tumor growth along with a reduction in the survival time of the tumor-bearing host. Neem oil administered DL-bearing mice showed an augmented apoptosis in splenocytes, bone marrow cells and thymocytes along with an inhibition in the anti-tumor functions of tumor-associated macrophages. Thus this study gives an altogether a novel information that neem oil instead of the popular belief of being anti-tumor and immunoaugmentary may in some tumor-bearing conditions, behave in an opposite way leading to an accelarated tumor progression along with a collapse of the host's anti-tumor machinery. These observations will thus have long lasting clinical significance, suggesting caution in use of neem oil for treatment of cancer.

Torque Prediction of Ball Bearings Considering Cages using Computational Fluid Dynamics (전산유체역학을 이용한 케이지가 고려된 볼 베어링의 토크 예측)

  • Jungsoo Park;Jeongsik Kim;Seungpyo Lee
    • Tribology and Lubricants
    • /
    • v.40 no.1
    • /
    • pp.1-7
    • /
    • 2024
  • Ball bearings are a major component of mechanical parts for transmitting rotation. Compared to tapered roller bearings, ball bearings offer less rolling resistance, which leads to reduced heat generation during operation. Because of these characteristics, ball bearings are widely used in electric vehicles and machine tools. The design of ball bearing cages has recently emerged as a major issue in ball bearing design. Cage design requires pre-verification of performance using theoretical or experimental formula or computational fluid dynamics (CFD). However, CFD analysis is time-consuming, making it difficult to apply in case studies for design decisions and is mainly used in performance prediction following design confirmation. To use CFD in the early stages of design, main-taining analytical accuracy while reducing the time required for analysis are necessary. Accordingly, this study proposes a laminar steady-state segment CFD technique to solve the problem of long CFD analytical times and to enable the use of CFD analysis in the early stages of design. To verify the reliability of the CFD analysis, a bearing drag torque test is performed, and the results are compared with the analytical results. The proposed laminar steady-state segment CFD technique is expected to be useful for case studies in bearing design, including cage design.

Experimental estimate of Nγ values and corresponding settlements for square footings on finite layer of sand

  • Dixit, Manish S.;Patil, Kailas A.
    • Geomechanics and Engineering
    • /
    • v.5 no.4
    • /
    • pp.363-377
    • /
    • 2013
  • Any structure constructed on the earth is supported by the underlying soil. Foundation is an interfacing element between superstructure and the underlying soil that transmits the loads supported by the foundation including its self weight. Foundation design requires evaluation of safe bearing capacity along with both immediate and long term settlements. Weak and compressible soils are subjected to problems related to bearing capacity and settlement. The conventional method of design of footing requires sufficient safety against failure and the settlement must be kept within the allowable limit. These requirements are dependent on the bearing capacity of soil. Thus, the estimation of load carrying capacity of footing is the most important step in the design of foundation. A number of theoretical approaches, in-situ tests and laboratory model tests are available to find out the bearing capacity of footings. The reliability of any theory can be demonstrated by comparing it with the experimental results. Results from laboratory model tests on square footings resting on sand are presented in this paper. The variation of bearing capacity of sand below a model plate footing of square shape with variation in size, depth and the effect of permissible settlement are evaluated. A steel tank of size $900mm{\times}1200mm{\times}1000mm$ is used for conducting model tests. Bearing capacity factor $N_{\gamma}$ is evaluated and is compared with Terzaghi, Meyerhof, Hansen and Vesic's $N_{\gamma}$ values. From the experimental investigations it is found that, as the depth of sand cushion below the footing ($D_{sc}$) increases, ultimate bearing capacity and settlement values show an increasing trend up to a certain depth of sand cushion.

Breeding of New Ever-bearing Strawberry "Doha" Variety

  • Jong Nam Lee;Jong Taek Suh;Su Jeong Kim;Hwang Bae Sohn;Do Yeon Kim;Jung Hwan Nam
    • Korean Journal of Plant Resources
    • /
    • v.35 no.6
    • /
    • pp.825-830
    • /
    • 2022
  • "Doha" is a new strawberry (Fragaria x ananassa Duch.) variety, which was released by the Highland Agriculture Research Institute in 2021. The "Doha" variety originates from a 2014 cross between "Saebong No. 3" and "Yeolha," both of which exhibited excellent ever-bearing characteristics, including continuous flowering and large fruits under long-day and high temperature conditions. This new cultivar was initially named "Saebong No. 13" after examining its characteristics and productivity during summer cultivation between 2015 and 2018. After regional adaptability tests, "Doha" was selected from "Saebong No. 13" as an elite cultivar. The general characteristics of "Doha" include spreading, elliptic leaves, and strong growth. The fruits are long and conical and of a red color. The plant height of "Doha" was similar to that of "Goha," but the number of leaves was lower. The number of flower clusters of "Doha" was 8.6, which was 2.8 fewer than that of the control variety, "Goha," with 11.4. The average fruit weight of "Doha" was 13.9 g, which was 4.9 g heavier than that of "Goha." The fruit hardness of "Doha" was 35.5 g·mm-2, which was 9.4 g·mm-2 harder than that of "Goha." The marketable yield of "Doha" was 26,971 kg·ha-1, 125% more than that of "Goha" with 21,479 kg·ha-1. The findings of this study suggest that "Doha" is a hard fruit and high-yielding variety of ever-bearing strawberries that could increase farming income when distributing to farmers.

Design of Large-scale Drilled Shaft (대구경 현장타설말뚝의 설계 사례)

  • Im, Chul-O;Choi, Young-Seok;Kwak, Ki-Seok;Jang, Hak-Sung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.545-553
    • /
    • 2009
  • A lot of long-span marine bridge, which connects land to island or island to island, are being designed and constructed lately in south-west coast in South Korea. In the past, caisson foundations in marine were mainly adopted in construction and stability aspect, however, nowadays with development of pile construction technology, drilled shaft foundations are mainly adopted. As the long span cable stayed bridge and suspension bridge applied with lots of loads are being designed, the scale of pile foundations are getting larger. As the construction cost of substructure including foundation in marine bridges is too high, the appropriate evaluation of the axial bearing capacity of pile becomes a core factor to decide the construction cost of foundation if the drilled shaft is adopted as foundation type of bridge. The evaluation values of skin friction and end bearing capacity of drilled shaft in weathered rock suggested in south Korea are only to introduce the foreign specifications, and most of them are designed in a kind of hard soil layer. Also the allowable load of pile section is less than the expected bearing capacity of pile in the soil condition since the allowable capacity of pile is undervalued. Recently in order to improve this factor the bi-axial hydraulic load test of pile was taken, the data of load transfer analysis of pile, unit of skin friction and end bearing capacity are accumulated. In our country, the design of piles are made with ASD, however, LRFD considering service, strength and extreme state was adopted in Incheon Grand Bridge implemented with BTL, and the research to systematize the resistance coefficient appropriate at home country are being progressed.

  • PDF

Study on the Vertical Pile Capacity of Base-grouted Pile (선단 하부지반 그라우팅된 개단강관말뚝의 연직 지지력에 관한 연구)

  • 정두환;최용규;정성교
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.2
    • /
    • pp.165-180
    • /
    • 1999
  • Static load tests were performed for open-ended piles, closed-ended piles, piles with grouted toe, and base-grouted piles by using calibration chamber. Then vertical bearing capacities determined from load tests were compared with each other. The stability of base-grouted pile during a simulated seaquake was investigated by changing the penetration depth. Also, static load tests and seaquake tests for 2-piles and 4-piles group were performed. The bearing capacity of the pile grouted inside the toe was 11.2~30.8% less than that of open-ended pile because of reduction of base resistance due to disturbance of base soil under pile toe. The bearing capacity of a base-grouted pile was 23.8~33.9% more than that of an open-ended pile and was similar to that of a closed-ended pile. The bearing capacity of base-grouted group pile was increased ; the bearing capacity of base-grouted 2-piles group increased 14.6~31.8% compared to that of open-ended 2-piles group, and that of base-grouted 4-piles group increased 15.3~22.4% compared to that of open-ended 4-piles group. During the simulated seaquake in deep sea, stability of base-grouted pile was found to be dependent on the pile penetration depth. During seaquake motion, single long base-grouted pile longer than 20m was stable and short base-grouted pile shorter than 12m failed. But relatively long base-grouted pile longer than 12m kept mobility state. Bearing capacity of base-grouted group pile with penetration depth less than 7m was degraded a little bit ; so, base-grouted group pile could maintain mobility condition.

  • PDF

Analysis of Long-Term Settlement Parameter Correlation and Bearing Capacity Reinforcement Effect for Closed Waste Landfill (사용종료 매립장의 장기침하 모델 매개변수 상관성 및 지지력 보강효과 분석)

  • Cho, Young-Kweon;Chae, Young Su
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.4
    • /
    • pp.1-10
    • /
    • 2013
  • Recently, the closed landfills are usually converted into parks or playground by the check the stability of landfill because they settle unevenly making them unsuitable for structures. When the closed landfill reuse, environmental and structural stability is important. To increase the bearing capacity and reduce the probable settlement of a foundation on waste disposal ground, a layer of geosynthetics(Geocell) is placed on the waste disposal ground. In this paper, the analysis of long-term settlement parameter correlation was performed, also the evaluation of bearing capacity reinforcement effect was conducted by field test. The settlement measured in the field, and input the same ground index when an integer to identify each model were compared by calculating the settlement. In addition, by adjusting the parameters of each model to identify the most similar to the value of field measurement parameters were calculated. Based on the analysis results, when the using the Park's model C(intermediate) = 0.0678, the expected settlement is similar to the field measurement results. Also, the bearing capacity of geocell reinforced ground is 1.193~1.554 times higher than that of unreinforced ground.

A Study on Fine Element Modeling Method of Yaw Bearing for Wind Turbine (풍력터빈 요 베어링의 유한요소모델링 기법에 관한 연구)

  • Seok, Ho-Il;Ko, Woo-Shick;Choi, Won-Ho;Lee, Seung-Kuh
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.11a
    • /
    • pp.249-252
    • /
    • 2006
  • Recently, the interest for renewable energy producing system is increasing rapidly. Among these, the wind turbine is most highlighted. It is installed at severe environment and generate electricity for a long time to exceed in 20. Components of wind turbine are required high reliability. Therefore, structural strength analysis for wind turbine is needed an accurate FE model. This paper is to provide reliable fine element modeling method of yaw bearing for wind turbine.

  • PDF

A Study on Finite Element Modeling Method of Yaw Bearing for Wind Turbine (풍력터빈 요 베어링의 유한요소모델링 기법에 관한 연구)

  • Lee, Dong-Hwan;Ko, Woo-Sick;Lee, Hyoung-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.8
    • /
    • pp.918-923
    • /
    • 2007
  • Recently, the interest for renewable energy producing system is increasing rapidly. Among these, the wind turbine is most highlighted. It is installed at severe environment and generated electricity for a long time to exceed twenty years. Components of wind turbine are required high reliability. Therefore, structural strength analysis for wind turbine is needed for an accurate FE model. This paper is to provide reliable fine element modeling method of yaw bearing for wind turbine.