• Title/Summary/Keyword: Lognormal Distribution

Search Result 248, Processing Time 0.028 seconds

Medium-Small and Venture Firm Size Distribution and Trade Welfare (중소벤처기업규모와 무역후생)

  • Cho, Sang Sup;Min, Kyung Se
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.12 no.6
    • /
    • pp.41-47
    • /
    • 2017
  • This study is an empirical analysis of the welfare of small and medium venture company trade. In the past, although the study analyzes the trade welfare for representative firm, this research is focusing on the distribution of an entire industry of companies analyzed. In this study, medium-to venture enterprise-scale for logarithmic normal distribution and Pareto distribution is estimated, and this study investigates the trading welfare changes. Results of the analysis can be summarized as follows. First of all, greater trade benefits enterprise-scale heterogeneity appeared to be significant. The result of this finding appeared to be the same to large firms as well as small and medium ventures. Trading welfare, assuming the distribution of Pareto rather than logarithmic normal distribution it's supposed to be overwhelmingly large. Secondly, the case of large corporations shows the more trade welfare than that of small and medium venture companies. Third, assuming homogeneous distribution of enterprise-scale trade welfare differences did not exist. Finally, from the point of view of increasing the welfare of trade, the diversity aiming of venture business is a very important role in the long term, because of the small and medium-sized ventures trade role.

  • PDF

The Determination of Probability Distributions of Annual, Seasonal and Monthly Precipitation in Korea (우리나라의 연 강수량, 계절 강수량 및 월 강수량의 확률분포형 결정)

  • Kim, Dong-Yeob;Lee, Sang-Ho;Hong, Young-Joo;Lee, Eun-Jai;Im, Sang-Jun
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.12 no.2
    • /
    • pp.83-94
    • /
    • 2010
  • The objective of this study was to determine the best probability distributions of annual, seasonal and monthly precipitation in Korea. Data observed at 32 stations in Korea were analyzed using the L-moment ratio diagram and the average weighted distance (AWD) to identify the best probability distributions of each precipitation. The probability distribution was best represented by 3-parameter Weibull distribution (W3) for the annual precipitation, 3-parameter lognormal distribution (LN3) for spring and autumn seasons, and generalized extreme value distribution (GEV) for summer and winter seasons. The best probability distribution models for monthly precipitation were LN3 for January, W3 for February and July, 2-parameter Weibull distribution (W2) for March, generalized Pareto distribution (GPA) for April, September, October and November, GEV for May and June, and log-Pearson type III (LP3) for August and December. However, from the goodness-of-fit test for the best probability distributions of the best fit, GPA for April, September, October and November, and LN3 for January showed considerably high reject rates due to computational errors in estimation of the probability distribution parameters and relatively higher AWD values. Meanwhile, analyses using data from 55 stations including additional 23 stations indicated insignificant differences to those using original data. Further studies using more long-term data are needed to identify more optimal probability distributions for each precipitation.

Cloud Generation Using a Huge Vertical Mine

  • Ma, Chang-Jin
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.E2
    • /
    • pp.78-88
    • /
    • 2006
  • In order to study the characteristics of cloud, a real-scale experiment for cloud generation was carried out using an extinct vertical mine (430 m height) located in the northeastern Honshu, Japan. The dry particles generated from the three-step concentrations of NaCl solutions were used for cloud generation. The number size distributions of initial dry particles and cloud droplets were monitored by Scanning Mobility Particle Sizer (SMPS) and Forward Scattering Spectrometer Probe (FSSP) at bottom and upper sites of pit, respectively. The polymeric water absorbent film (PWAF) method was employed to measure liquid water content ($W_L$) as a function of droplet size. Moreover the chemical properties of individual droplet replicas were determined by micro-PIXE. The CCN number concentration shows the lognormal form in dependence of the particle size, while the number size distributions of droplets are bimodal showing the peaks around $9{\mu}m$ and $20{\mu}m$ for every case. In comparison to background mineral particles, right shifting of size distribution line for NaCl particles was occurred. When NaCl solutions with three-step different concentrations were neulized, $W_L$ shows the strong droplet size dependence. It varied from $10.0mg\;m^{-3}$ up to $13.6mg\;m^{-3}$ with average $11.6mg\;m^{-3}$. A good relationship between $W_L$ and cloud droplet number concentration was obtained. Both chemical inhomogeneities (mixed components with mineral and C1) and homogeneities (only mineral components or C1) in individual droplet replicas were obviously observed from micro-PIXE elemental images.

Fragility analysis of R/C frame buildings based on different types of hysteretic model

  • Borekci, Muzaffer;Kircil, Murat S.
    • Structural Engineering and Mechanics
    • /
    • v.39 no.6
    • /
    • pp.795-812
    • /
    • 2011
  • Estimation of damage probability of buildings under a future earthquake is an essential issue to ensure the seismic reliability. Fragility curves are useful tools for showing the probability of structural damage due to earthquakes as a function of ground motion indices. The purpose of this study is to compare the damage probability of R/C buildings with low and high level of strength and ductility through fragility analysis. Two different types of sample buildings have been considered which represent the building types mentioned above. The first one was designed according to TEC-2007 and the latter was designed according to TEC-1975. The pushover curves of sample buildings were obtained via pushover analyses. Using 60 ground motion records, nonlinear time-history analyses of equivalent single degree of freedom systems were performed using bilinear hysteretic model and peak-oriented hysteretic model with stiffness - strength deterioration for each scaled elastic spectral displacement. The damage measure is maximum inter-story drift ratio and each performance level considered in this study has an assumed limit value of damage measure. Discrete damage probabilities were calculated using statistical methods for each considered performance level and elastic spectral displacement. Consequently, continuous fragility curves have been constructed based on the lognormal distribution assumption. Furthermore, the effect of hysteresis model parameters on the damage probability is investigated.

Incorporation of collapse safety margin into direct earthquake loss estimate

  • Xian, Lina;He, Zheng;Ou, Xiaoying
    • Earthquakes and Structures
    • /
    • v.10 no.2
    • /
    • pp.429-450
    • /
    • 2016
  • An attempt has been made to incorporate the concept of collapse safety margin into the procedures proposed in the performance-based earthquake engineering (PBEE) framework for direct earthquake loss estimation, in which the collapse probability curve obtained from incremental dynamic analysis (IDA) is mathematically characterized with the S-type fitting model. The regressive collapse probability curve is then used to identify non-collapse cases and collapse cases. With the assumed lognormal probability distribution for non-collapse damage indexes, the expected direct earthquake loss ratio is calculated from the weighted average over several damage states for non-collapse cases. Collapse safety margin is shown to be strongly related with sustained damage endurance of structures. Such endurance exhibits a strong link with expected direct earthquake loss. The results from the case study on three concrete frames indicate that increase in cross section cannot always achieve a more desirable output of collapse safety margin and less direct earthquake loss. It is a more effective way to acquire wider collapse safety margin and less direct earthquake loss through proper enhancement of reinforcement in structural components. Interestingly, total expected direct earthquake loss ratio seems to be insensitive a change in cross section. It has demonstrated a consistent correlation with collapse safety margin. The results also indicates that, if direct economic loss is seriously concerned, it is of much significance to reduce the probability of occurrence of moderate and even severe damage, as well as the probability of structural collapse.

Changes of Fluvial Hydraulic Characteristics due to the Semi-Convering Work of Urban Stream (도시하천의 부분복개화에 의한 하천수리특성치의 변화)

  • Chang, In-Soo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.2 no.1
    • /
    • pp.35-43
    • /
    • 1999
  • The purpose of this study is to derive the optimal methodology estimating the changes of fluvial hydraulic characteristics due to semi-covering work of urban stream. First, after collecting the data of the daily maximum rainfall of Chungju gaging station, the frequency analysis was carried out with frequency factor method, which includes normal, two-parameter and three-parameter lognormal, Gumbel-Chow, pearson type III, log-pearson type III distribution, and the goodness of fit test was executed by $x^2$-test and Kormogorov-Smimov test. Using the SCS method, the effective rainfall was estimated and the peak flow was calculated by the area-routing method. The HEC-2 model was applied to calculate water surface profiles for steady, gradually varied flow at Kyohyun river system in Chungju city. The model was applied to floodplain and riverbed management to evaluate flood way encroachments and to delineate flood hazard by riverside roadway construction. The model also was used to evaluate effects on water surface profiles of river improvement and levees as well as the presence of bridges or other hydraulic structures in the floodplain.

  • PDF

Downlink Performance of Distributed Antenna Systems in MIMO Composite Fading Channel

  • Xu, Weiye;Wang, Qingyun;Wang, Ying;Wu, Binbin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.10
    • /
    • pp.3342-3360
    • /
    • 2014
  • In this paper, the capacity and BER performance of downlink distributed antenna systems (DAS) with transmit antenna selection and multiple receive antennas are investigated in MIMO composite channel, where path loss, Rayleigh fading and lognormal shadowing are all considered. Based on the performance analysis, using the probability density function (PDF) of the effective SNR and numerical integrations, tightly-approximate closed-form expressions of ergodic capacity and average BER of DAS are derived, respectively. These expressions have more accuracy than the existing expressions, and can match the simulation well. Besides, the outage capacity of DAS is also analyzed, and a tightly-approximate closed-form expression of outage capacity probability is derived. Moreover, a practical iterative algorithm based on Newton's method for finding the outage capacity is proposed. To avoid iterative calculation, another approximate closed-form outage capacity is also derived by utilizing the Gaussian distribution approximation. With these theoretical expressions, the downlink capacity and BER performance of DAS can be effectively evaluated. Simulation results show that the theoretical analysis is valid, and consistent with the corresponding simulation.

Reliability-based assessment of American and European specifications for square CFT stub columns

  • Lu, Zhao-Hui;Zhao, Yan-Gang;Yu, Zhi-Wu;Chen, Cheng
    • Steel and Composite Structures
    • /
    • v.19 no.4
    • /
    • pp.811-827
    • /
    • 2015
  • This paper presents a probabilistic investigation of American and European specifications (i.e., AISC and Eurocode 4) for square concrete-filled steel tubular (CFT) stub columns. The study is based on experimental results of 100 axially loaded square CFT stub columns from the literature. By comparing experimental results for ultimate loads with code-predicted column resistances, the uncertainty of resistance models is analyzed and it is found that the modeling uncertainty parameter can be described using random variables of lognormal distribution. Reliability analyses were then performed with/without considering the modeling uncertainty parameter and the safety level of the specifications is evaluated in terms of sufficient and uniform reliability criteria. Results show that: (1) The AISC design code provided slightly conservative results of square CFT stub columns with reliability indices larger than 3.25 and the uniformness of reliability indices is no better because of the quality of the resistance model; (2) The uniformness of reliability indices for the Eurocode 4 was better than that of AISC, but the reliability indices of columns designed following the Eurocode 4 were found to be quite below the target reliability level of Eurocode 4.

Damage states of yielding and collapse for elevated water tanks supported on RC frame staging

  • Lakhade, Suraj O.;Kumar, Ratnesh;Jaiswal, mprakash R.
    • Structural Engineering and Mechanics
    • /
    • v.67 no.6
    • /
    • pp.587-601
    • /
    • 2018
  • Elevated water tanks are inverted pendulum type structures where drift limit is an important criterion for seismic design and performance evaluation. Explicit drift criteria for elevated water tanks are not available in the literature. In this study, probabilistic approach is used to determine maximum drift limit for damage state of yielding and damage state of collapse for the elevated water tanks supported on RC frame staging. The two damage states are defined using results of incremental dynamic analysis wherein a total of 2160 nonlinear time history analyses are performed using twelve artificial spectrum compatible ground motions. Analytical fragility curves are developed using two-parameter lognormal distribution. The maximum allowable drifts corresponding to yield and collapse level requirements are estimated for different tank capacities. Finally, a single fragility curve is developed which provides maximum drift values for the different probability of damage. Further, for rational consideration of the uncertainties in design, three confidence levels are selected and corresponding drift limits for damage states of yielding and collapse are proposed. These values of maximum drift can be used in performance-based seismic design for a particular damage state depending on the level of confidence.

Rapid seismic vulnerability assessment by new regression-based demand and collapse models for steel moment frames

  • Kia, M.;Banazadeh, M.;Bayat, M.
    • Earthquakes and Structures
    • /
    • v.14 no.3
    • /
    • pp.203-214
    • /
    • 2018
  • Predictive demand and collapse fragility functions are two essential components of the probabilistic seismic demand analysis that are commonly developed based on statistics with enormous, costly and time consuming data gathering. Although this approach might be justified for research purposes, it is not appealing for practical applications because of its computational cost. Thus, in this paper, Bayesian regression-based demand and collapse models are proposed to eliminate the need of time-consuming analyses. The demand model developed in the form of linear equation predicts overall maximum inter-story drift of the lowto mid-rise regular steel moment resisting frames (SMRFs), while the collapse model mathematically expressed by lognormal cumulative distribution function provides collapse occurrence probability for a given spectral acceleration at the fundamental period of the structure. Next, as an application, the proposed demand and collapse functions are implemented in a seismic fragility analysis to develop fragility and consequently seismic demand curves of three example buildings. The accuracy provided by utilization of the proposed models, with considering computation reduction, are compared with those directly obtained from Incremental Dynamic analysis, which is a computer-intensive procedure.