• Title/Summary/Keyword: Logistics Vehicles

Search Result 179, Processing Time 0.029 seconds

Inter-device Mutual Authentication and Formal Verification in Vehicular Security System (자동차 보안시스템에서 장치간 상호인증 및 정형검증)

  • Lee, Sang-Jun;Bae, Woo-Sik
    • Journal of Digital Convergence
    • /
    • v.13 no.4
    • /
    • pp.205-210
    • /
    • 2015
  • The auto industry has significantly evolved to the extent that much attention is paid to M2M (Machine-to-Machine) communication. In M2M communication which was first used in meteorology, environment, logistics, national defense, agriculture and stockbreeding, devices automatically communicate and operate in accordance with varying situations. M2M system is applied to vehicles, specifically to device-to-device communication inside cars, vehicle-to-vehicle communication, communication between vehicles and traffic facilities and that between vehicles and surroundings. However, communication systems are characterized by potential intruders' attacks in transmission sections, which may cause serious safety problems if vehicles' operating system, control system and engine control parts are attacked. Thus, device-to-device secure communication has been actively researched. With a view to secure communication between vehicular devices, the present study drew on hash functions and complex mathematical formulae to design a protocol, which was then tested with Casper/FDR, a tool for formal verification of protocols. In brief, the proposed protocol proved to operate safely against a range of attacks and be effective in practical application.

A Methodology for Evaluating Vehicle Driving Safety based on the Analysis of Interactions With Roads and Adjacent Vehicles (도로 및 인접차량과의 상호작용분석을 통한 차량의 주행안전성 평가기법 개발 연구)

  • PARK, Jaehong;OH, Cheol;YUN, Dukgeun
    • Journal of Korean Society of Transportation
    • /
    • v.35 no.2
    • /
    • pp.116-128
    • /
    • 2017
  • Traffic accidents can be defined as a physical collision event of vehicles occurred instantaneously when drivers do not perceive the surrounding vehicles and roadway environments properly. Therefore, detecting the high potential events that cause traffic accidents with monitoring the interactions among the surroundings continuously by driver is the prerequisite for prevention the traffic accidents. For the analysis, basic data were collected to analyze interactions using a test vehicle which is equipped the GPS(Global Positioning System)-IMU(Inertial Measurement Unit), camera, radar and RiDAR. From the collected data, highway geometric information and the surrounding traffic situation were analyzed and then safety evaluation algorithm for driving vehicle was developed. In order to detect a dangerous event of interaction with surrounding vehicles, locations and speed data of surrounding vehicles acquired from the radar sensor were used. Using the collected data, the tangent and curve section were divided and the driving safety evaluation algorithm which is considered the highway geometric characteristic were developed. This study also proposed an algorithm that can assess the possibility of collision against surrounding vehicles considering the characteristics of geometric road structure. The methodology proposed in this study is expected to be utilized in the fields of autonomous vehicles in the future since this methodology can assess the driving safety using collectible data from vehicle's sensors.

A Study on the Development of Modular Design for Multi-purpose Electric Motor Vehicles in Rural Areas (농촌 다목적 모듈형 전기차 개발에 관한 연구)

  • Kwon, Sung-Ja;Kim, Myung-Soo;Lee, Bong-Joo
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.6
    • /
    • pp.173-182
    • /
    • 2020
  • Since 2000, Korea has seen a big trend in the market, as the EU tightened regulations on environment due to global warming, high oil prices and aging rural population distribution, strengthening the need for multi-purpose electric moto vehicles for small farmers based on eco-friendly energy. Multi-purpose electric motor vehicles for rural small businesses will be a very innovative means of transportation, not only maintained at a low cost and to reduce greenhouse gases through the activation of eco-friendly energy, but also be a very innovative means of transportation for reducing the labor intensity of the aging farming industry and transporting night work and logistics. In this paper, with the implementation of eco-friendly energy policies, small and medium-sized rural small business owners can easily operate on unpaved roads and well-drawn farming environments, while the intensity of labor can be reduced when transporting crops also can simply replace parts at a low cost in the event of an accident. To propose rural multi-purpose modular electric vehicles, the existing literature is reviewed and 12 modular parts are presented by benchmarking electric vehicles at home and abroad. This paper is thought to be helpful for the research of the industry as well as the design industry of modular electric vehicles.

A Study on the Improvement of the Logistics System for Heavy-goods Maintenance in Navy Ship (해군함정 중량형 정비품 물류체계 개선에 관한 연구)

  • Jang, Ji-Hwan;Kim, Hwan-Seong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2020.11a
    • /
    • pp.163-164
    • /
    • 2020
  • Along with the increase in global volume of goods, logistics companies are trying to reduce costs by increasing the size of ships carrying cargo, increasing the efficiency of quantitative equipment at ports, and unmanned electric vehicles on land. Korean naval ports are also facing the same situation as the global trend. In the past, small and medium-sized ships such as FF, PCC, and beheaded eagles are being retired for their longevity, and their positions are being replaced by large ships such as KDX, FFG, and LST-II. In particular, large ships such as Dokdo and the next light aircraft carriers are also being prepared. Unlike general merchant ships, naval ships require periodic inspections and preventive maintenance, so repair piers such as maintenance depots are in operation. The naval maintenance depot mainly uses trailers, trucks, and truck-type cranes to carry out loading and unloading of heavy ships, and the application or development of automation and unmanned equipment performed by the private sector is inadequate, and self-improvement cases are also very weak. This study aims to improve the efficiency of the military logistics system through research on the logistics system such as transport, storage and unloading of heavy goods and maintenance products of naval ships.

  • PDF

Implementation of a Flexible Architecture for a Mobile Power Cart Applying Design Patterns (설계 패턴을 이용한 모바일 파워 카트의 유연한 아키텍처 구현)

  • Lee, Jong Min;Kim, Seong Woo;Kwon, Oh Jun
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.4
    • /
    • pp.747-755
    • /
    • 2016
  • Automated guided vehicles have been used for a long time to increase work efficiency in the logistics field, but it is difficult to apply to a variety of logistics sites due to either the restricted movement mechanism or expensive devices. In this paper, we present a flexible software architecture that is hardware-independent for a mobile power cart of the follow mode and implement it using a ROS software platform. Through the SCV analysis for the system functionalities, we design a package to track a user movement and a package to control a new hardware platform. It has an advantage to use a variety of movement algorithms and hardware platforms by applying the strategy pattern and the template method pattern for the design of a software architecture. Through the performance evaluation, we show that the proposed design is maintainable in terms of a software complexity and it detects a user's movement by obtaining a user skeleton information so that it can control a hardware platform to move at a certain distance.

A Study of The Improvement For In And Out Logistics Process Applying Lean Six Sigma (Lean Six Sigma를 적용한 물류 프로세스 개선에 관한 연구)

  • Jang, Jae-Sik;Nam, Ho-Ki;Park, Sang-Min
    • Journal of the Korea Safety Management & Science
    • /
    • v.9 no.4
    • /
    • pp.99-112
    • /
    • 2007
  • In most recent years, the business competition has spreads over all fields of corporations and their management area regardless of time and place, which makes the survival environment of each enterprise fiercer. In order to secure a high position in the competitive market, the various firms has implemented many methods related to price, quality, and service efficiency. However, the implementation with only low price or high quality might be helpless to hold a high position in modem market. Moreover more attention should be paid to the internal business processes of an organization. Therefore, a new and different method should be searched or developed in order to win the competitive power among other enterprises. This research will focus on the improvement of the business processes within the non-manufacturing industry by applying Lean Six Sigma methodology. DMAIC method will be applied to improve the inbound and outbound logistics processes, manage the inbound and outbound vehicles, and control the receiving and shipping activities.

A Heuristic for Drone-Utilized Blood Inventory and Delivery Planning (드론 활용 혈액 재고/배송계획 휴리스틱)

  • Jang, Jin-Myeong;Kim, Hwa-Joong;Son, Dong-Hoon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.3
    • /
    • pp.106-116
    • /
    • 2021
  • This paper considers a joint problem for blood inventory planning at hospitals and blood delivery planning from blood centers to hospitals, in order to alleviate the blood service imbalance between big and small hospitals being occurred in practice. The joint problem is to determine delivery timing, delivery quantity, delivery means such as medical drones and legacy blood vehicles, and inventory level to minimize inventory and delivery costs while satisfying hospitals' blood demand over a planning horizon. This problem is formulated as a mixed integer programming model by considering practical constraints such as blood lifespan and drone specification. To solve the problem, this paper employs a Lagrangian relaxation technique and suggests a time efficient Lagrangian heuristic algorithm. The performance of the suggested heuristic is evaluated by conducting computational experiments on randomly-generated problem instances, which are generated by mimicking the real data of Korean Red Cross in Seoul and other reliable sources. The results of computational experiments show that the suggested heuristic obtains near-optimal solutions in a shorter amount of time. In addition, we discuss the effect of changes in the length of blood lifespan, the number of planning periods, the number of hospitals, and drone specifications on the performance of the suggested Lagrangian heuristic.

A Study on the Automatic Matching Algorithm of Transporter and Working Block for Block Logistics Management (블록 물류 관리를 위한 트랜스포터와 작업 블록 자동 매칭 알고리즘 연구)

  • Song, Jin-Ho;Park, Kwang-Phil;Ok, Jin-Sung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.5
    • /
    • pp.314-322
    • /
    • 2022
  • During the shipbuilding process, many blocks are moved between shipyard workshops by block carrying vehicles called a transporter. Because block logistics management is one of the essential factors in enhancing productivity, it is necessary to manage block information with the transporter that moves it. Currently, because a large amount of data per day are collected from sensors attached to blocks and transporters via IoT infrastructure installed in shipyards, automated methods are needed to analyze them. Therefore, in this study, we developed an algorithm that can automatically match the transporter and the working block based on the GPS sensor data. By comparing the distance between the transporter and the blocks calculated from the Haversine formula, the block is found which is moved by the transporter. In this process, since the time of the measured data of moving objects is different, the time standard for calculating the distance must be determined. The developed algorithm was verified using actual data provided by the shipyard, and the correct result was confirmed with the distance based on the moving time of the transporter.

Optimization for Vehicle Routing Problem with Locations of Parcel Lockers (물품보관소 위치를 고려한 차량경로문제 최적화)

  • Gitae Kim
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.4
    • /
    • pp.134-141
    • /
    • 2022
  • Transportation in urban area has been getting hard to fulfill the demand on time. There are various uncertainties and obstacles related with road conditions, traffic congestions, and accidents to interrupt the on-time deliveries. With this situation, the last mile logistics has been a keen issue for researchers and practitioners to find the best strategy of the problem. A way to resolve the problem is to use parcel lockers. Parcel locker is a storage that customers can pick up their products. Transportation vehicles deliver the products to parcel lockers instead of all customer sites. Using the parcel lockers, the total delivery costs can be reduced. However, the inconvenience of customer has to increase. Thus, we have to optimal solution to balance between the total delivery costs and customers' inconvenience. This paper formulates a mathematical model to find the optimal solution for the vehicle routing problem and the location problem of parcel lockers. Experimental results provide the viability to find optimal strategy for the routing problem as well as the location problem.

On the Linkage of Object Properties for the Implementation of Virtual Validation of Railway Vehicle from Life Cycle Perspective (생명주기 관점에서 철도차량 가상확인 구현을 위한 개체 속성 연계에 관한 연구)

  • Min Joong Kim;Joo Uk Kim;U Ri Chae;Young Min Kim
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.20 no.1
    • /
    • pp.85-94
    • /
    • 2024
  • As systems become more complex today, verifying the safety of complex systems is becoming increasingly important. However, validation activities using actual systems face limitations in terms of time and cost. To overcome these limitations, the functions, characteristics, and operations of physical assets can be implemented in a virtual environment similar to the real world, allowing for validation through simulations under various scenarios. By performing validation in a virtual environment, iterative tests can be conducted through simulations in a realistic virtual environment without physical models during the conceptual design phase. Tests can also be performed under malfunction conditions or extreme conditions. In this study, we introduce a verification method for railway vehicles in a virtual environment and propose a method of applying virtual verification from a life cycle perspective.