이 연구에서는 미분양 아파트 단지의 세대별 계약 자료에 데이터 마이닝 기법인 의사결정나무, 신경망, 로지스틱 모형을 적용하여 세대별 초기계약을 예측하는 모형을 개발한다. 모형 개발에는 위례신도시 미분양 아파트 단지의 계약 자료가 이용되며, 이 자료는 훈련용 자료와 검정용 자료로 분할되어 분석에 투입된다. 훈련용 자료에서는 신경망, 의사결정나무, 로지스틱 모형 순으로 예측력이 뛰어났지만 검정용 자료에서는 로지스틱 모형이 가장 우수하게 나타났다. 이 같은 결과는 신경망이 훈련용 자료에 최적화된 모형으로 구축되면서 검정용 자료에 대한 적응성이 떨어져 나타난 결과로 판단된다. 의사결정나무와 로지스틱 모형을 병행 적용한 결과, 층수, 향, 세대 위치, 전기 및 발전기실의 소음, 청약자 거주지, 청약 종류가 초기계약에 영향을 주는 것으로 나타났다. 이는 두 가지 모형을 같이 사용하는 것이 초기계약 결정요인 발굴에 더 효과적이라는 것을 의미한다. 이 연구는 데이터 마이닝의 적용 범위를 주택 분양 예측까지 확장함으로써 융복합 분야 발전에 기여하고 있다.
비료는 작물 생산성을 높이는데 중요한 역할을 하지만 작물의 양분요구량을 고려하지 않은 비료 과다 사용은 농가 경영비 부담과 환경 부하를 높힐 우려가 있다. 스마트 농업을 통해 작물의 생장 특성을 반영하여 시기별로 필요한 만큼 비료를 공급하면 비료 유실에 대한 부담을 줄이고, 경제적인 양분관리 효과를 기대할 수 있다. 본 논문에서는 다양한 재배환경에서 재배한 고추 및 대파의 정식일수별 전체 건중량을 기반으로 다양한 생장곡선(로지스틱(logistic), 곰페르츠(Gompertz), 리차드(Richards), 이중 로지스틱(double logistic curve)을 활용한 비선형 모형 기반 작물 생육 모형을 적합하고, 작물 성장률에 기반한 비료시비량 분배 알고리즘을 제안하고자 한다.
Artificial neural network(ANN) models have been widely used for the classification problems in business such as bankruptcy prediction, credit evaluation, etc. Although the application of ANN to classification of consumers' choice behavior is a promising research area, there have been only a few researches. In general, most of the researches have reported that the classification performance of the ANN models were better than conventional statistical model Because the survey data on consumer behavior may include much noise and missing data, ANN model will be more robust than conventional statistical models welch need various assumptions. The purpose of this paper is to study the potential of the ANN model for forecasting consumers' choice behavior based on survey data. The data was collected by questionnaires to the shoppers of department stores and discount stores. Then the correct classification rates of the ANN models for the training and test sample with that of multiple discriminant analysis(MDA) and logistic regression(Logit) model. The performance of the ANN models were betted than the performance of the MDA and Logit model with respect to correct classification rate. By using input variables identified as significant in the stepwise MDA, the performance of the ANN models were improved.
Objectives Genome-wide association studies(GWAS) is a useful method to identify genetic associations for various phenotypes. The purpose of this study was to develop predictive models for Sasang constitution types using genetic factors. Methods The genotypes of the 1,999 subjects was performed using Axiom Precision Medicine Research Array (PMRA) by Life Technologies. All participants were prescribed Sasang Constitution-specific herbal remedies for the treatment, and showed improvement of original symptoms as confirmed by Korean medicine doctor. The genotypes were imputed by using the IMPUTE program. Association analysis was conducted using a logistic regression model to discover Single Nucleotide Polymorphism (SNP), adjusting for age, sex, and BMI. Results & Conclusions We developed models to predict Korean medicine constitution types using identified genectic factors and sex, age, BMI using Random Forest (RF), Support Vector Machine (SVM), and Neural Network (NN). Each maximum Area Under the Curve (AUC) of Teaeum, Soeum, Soyang is 0.894, 0.868, 0.767, respectively. Each AUC of the models increased by 6~17% more than that of models except for genetic factors. By developing the predictive models, we confirmed usefulness of genetic factors related with types. It demonstrates a mechanism for more accurate prediction through genetic factors related with type.
Journal of the Korean Data and Information Science Society
/
제21권1호
/
pp.21-32
/
2010
그래픽적 회귀는 모형에 대한 가정을 하지 않고 회귀정보를 모두 포함하는 충분요약그림을 찾아내는 분석 방법으로 모든 회귀정보를 저차원의 그림으로 표현할 수 있게 하는 데에 그 목적이 있다. 잔차산점도를 이용한 모형의 평가는 적용 범위가 선형회귀모형에 국한되는 문제점이 있기 때문에 일반화선형모형에서는 그 대안으로 주변모형 산점도를 이용하여 모형의 적절성을 평가한다. 본 논문에서는 일반화선형모형 중에서 이진반응변수를 갖는 로지스틱모형에서의 그래픽적 회귀 방법과 주변모형 산점도를 이용한 모형평가 방법을 알아본다.
In this paper, tests are carried out in order to investigate the strength development of concrete under various binder types, W/B and curing temperature ranged from $5{\sim}20^{\circ}C$. Fly ash and blast furnace slag were incorporated by as much as 30%, respectively. Strength development of concrete are estimated using Logistic model and strength ratio of concrete at 28days to that at early age are also investigated. According to experimental results, it is found that good agreements are obtained between measured values and calculated ones using logistic model below $20^{\circ}C$. Strength ratio of concrete at 28days to that at early age increases in case W/B decreases and curing temperature increases. Tables and graphs for strength ratio of concrete are provided in this paper. It is capable of obtaining and predicting the periods to attain design strength by considering increment factor of strength easily with the table and graphs presented in this paper. This paper presents the reference data to decide removal time of form, time to reach target strength and strength inspection of remicon whether the test specimens meet the specified criteria of compressive strength. Multi regression models with respect to the relationship between 7days compressive strength and 28 days compressive strength depending on W/B and admixture types are presented.
The smelting and the continuous casting of steel are important processes that determine the quality of steel products. Especially most of quality defects occur during solidification of the steel continuous casting process. Although quality control techniques such as six sigma, SQC, and TQM can be applied to the continuous casting process for improving quality of steel products, these techniques don't provide real-time analysis to identify the causes of defect occurrence. To solve problems, we have developed a detection model using decision tree which identified abnormal transactions to have a coarse grain structure. And we have compared the proposed model with models using neural network and logistic regression. Experiments on steel data showed that the performance of the proposed model was higher than those of neural network model and logistic regression model. Thus, we expect that the suggested model will be helpful to control the quality of steel products in real-time in the continuous casting process.
Forest fires have potentials to change the structure and function of forest ecosystems and significantly influence on atmosphere and biogeochemical cycles. Forest fire also affects the quality of public benefits such as carbon sequestration, soil fertility, grazing value, biodiversity, or tourism. The prediction of fire occurrence and its spread is critical to the forest managers for allocating resources and developing the forest fire danger rating system. Most of fires were human-caused fires in Korea, but meteorological factors are also big contributors to fire behaviors and its spread. Thus, meteorological factors as well as social factors were considered in the fire danger rating systems. A total of 298 forest fires occurred during the fall season from 2002 to 2006 in South Korea were considered for developing a logistic model of forest fire occurrence. The results of statistical analysis show that only effective humidity and temperature significantly affected the logistic models (p<0.05). The results of ROC curve analysis showed that the probability of randomly selected fires ranges from 0.739 to 0.876, which represent a relatively high accuracy of the developed model. These findings would be necessary for the policy makers in South Korea for the prevention of forest fires.
Recently, bioenergy research using microalgae, one of the most promising biofuel sources, has attracted much attention. Cell disruption, which can be classified as physical or chemical, is essential to extract functional ingredients from microalgae. In this study, we investigated the cell disruption efficiency of Chlorella sp. using low-frequency non-focused ultrasound (LFNFU). This is a continuously physical method that is superior to chemical methods with respect to environmental friendliness and low processing cost. A flat panel photobioreactor was employed to cultivate Chlorella sp. and its growth curve was fitted both with Logistic and Gompertz models. The temporal change in cell reduction by cell disruption using LFNFU was fitted with a Logistic model. The experimental conditions that were investigated were the initial concentration of microalgal cells, relative amplitude of output ultrasound waves, processing volume of microalgal cells, and initial pH value. The optimal conditions for the most efficient cell disruption were determined through the various tests.
El-Semary, Aly M.;Azim, Mohamed Mostafa A.;Diab, Hossam
KSII Transactions on Internet and Information Systems (TIIS)
/
제11권7호
/
pp.3608-3628
/
2017
Several block cipher modes of operation have been proposed in the literature to protect sensitive information. However, different security analysis models have been presented for attacking them. The analysis indicated that most of the current modes of operation are vulnerable to several attacks such as known plaintext and chosen plaintext/cipher-text attacks. Therefore, this paper proposes a secure block cipher mode of operation to thwart such attacks. In general, the proposed mode combines one-time chain keys with each plaintext before its encryption. The challenge of the proposed mode is the generation of the chain keys. The proposed mode employs the logistic map together with a nonce to dynamically generate a unique set of chain keys for every plaintext. Utilizing the logistic map assures the dynamic behavior while employing the nonce guarantees the uniqueness of the chain keys even if the same message is encrypted again. In this way, the proposed mode called SPCBC can resist the most powerful attacks including the known plaintext and chosen plaintext/cipher-text attacks. In addition, the SPCBC mode improves encryption time performance through supporting parallelized implementation. Finally, the security analysis and experimental results demonstrate that the proposed mode is robust compared to the current modes of operation.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.