• Title/Summary/Keyword: Logistic Support

Search Result 768, Processing Time 0.025 seconds

Association between Risk of Obstructive Sleep Apnea and Subjective Health and Health-Related Quality of Life of the Korean Middle-Aged and Elderly Population (한국 중고령층의 폐쇄성 수면무호흡증 위험과 주관적 건강 및 건강 관련 삶의 질 간의 연관성)

  • Nu-Ri Jun;Min-Soo Kim;Jeong-Min Yang;Jae-Hyun Kim
    • Health Policy and Management
    • /
    • v.34 no.2
    • /
    • pp.141-155
    • /
    • 2024
  • Background: This study aimed to identified the relationship between the risk of obstructive sleep apnea, subjective health, and health-related quality of life among the middle-aged and elderly population in Korea. Methods: Adults aged 40 or older were extracted from the total 22,559 respondents to the 2019-2020 Korea National Health and Nutrition Examination Survey VIII, and secondary analysis was conducted on a total of 6,659 middle-aged and elderly people with no missing values. Logistic regression analysis and multiple regression analysis were conducted to examine the relationship between obstructive sleep apnea risk factors and subjective health as well as quality of life. Results: The subjective health status decline in the high-risk group compared to the non-risk group for obstructive sleep apnea was statistically significantly higher, with an odds ratio of 1.84 (p<0.001). The health-related quality of life was also statistically significantly lower by 0.02 points (β, -0.02; p<0.001). As a result of subgroup analysis on specific variables, the association between the risk of obstructive sleep apnea and subjective health and health-related quality of life was statistically significant depending on gender, sleep time, presence of depression, household income, and number of household members. Based on the obstructive sleep apnea risk group, women had a higher correlation with low subjective health and lower health-related quality of life scores than men. Sleeping time of more than 8 hours or less than 6 hours was more associated with low subjective health and lower health-related quality of life score than sleeping time of 6-8 hours. Patients with depression were more likely to have low subjective health than those without depression. The lower the household income level and the smaller the number of household members, the higher the association with low subjective health and the lower the health-related quality of life score. Conclusion: It is essential to recognize that the risk of obstructive sleep apnea not only directly affects sleep disorders but also impacts individuals' subjective health and quality of life. Consequently, social support and education should be provided to raise awareness of this issue. Particularly, programs for preventing and managing obstructive sleep apnea should target vulnerable groups such as women, individuals in single-person households, low household income, and those with depression, aiming to improve their subjective health and quality of life.

Impact of the Utilization Gap of the Community-Based Smoking Cessation Programs on the Attempts for Quitting Smoking between Wonju and Chuncheon Citizen (원주시민과 춘천시민의 지역사회 내 금연프로그램 이용 격차가 금연 시도에 미치는 영향)

  • Kyung-Yi Do;Kwang-Soo Lee;Jae-Hwan Oh;Ji-Hae Park;Yun-Ji Jeong;Je-Gu Kang;Sun-Young Yoon;Chun-Bae Kim
    • Journal of agricultural medicine and community health
    • /
    • v.49 no.1
    • /
    • pp.37-49
    • /
    • 2024
  • Objectives: This study aimed to explore whether there are differences in smoking status between two regions of Wonju-City and Chuncheon-City, Gangwon State, and to determine whether the experience of smoking cessation programs in the region affects quit attempts. Methods: The study design was a cross-sectional study in which adults aged 19 and older living in two cities were surveyed using a pre-developed mobile app to investigate social capital for smoking cessation, and a total of 600 citizens were participated, including 310 in Wonju-City and 290 in Chuncheon-City. The statistical analysis was conducted using chi-square test and logistic regression analysis. Results: Wonju-City had a higher prevalence of current smoking than Chuncheon-City. Among smoking cessation programs operated by local public health centers, Wonju-City had a lower odds ratio for experience with smoking cessation education than Chuncheon-City (OR=0.52, 95% CI=0.33 to 0.81). When examining the effect of smoking cessation program experience on quit attempts, in Wonju-City, citizens who had completed smoking cessation education and used a smoking cessation clinic were more likely to attempt to quit than those who had not (OR=2.31 and OR=2.29, respectively). In Chuncheon-City, citizens who were aware of smoking cessation support services were 2.26 times more likely to attempt to quit smoking than those who were not, but statistical significance was not reached due to the small sample size. Conclusion: Therefore, healthcare organizations in both regions should develop more practical intervention strategies to increase smokers' quit attempts, reduce smoking rates in the community, and address regional disparities.

One-probe P300 based concealed information test with machine learning (기계학습을 이용한 단일 관련자극 P300기반 숨김정보검사)

  • Hyuk Kim;Hyun-Taek Kim
    • Korean Journal of Cognitive Science
    • /
    • v.35 no.1
    • /
    • pp.49-95
    • /
    • 2024
  • Polygraph examination, statement validity analysis and P300-based concealed information test are major three examination tools, which are use to determine a person's truthfulness and credibility in criminal procedure. Although polygraph examination is most common in criminal procedure, but it has little admissibility of evidence due to the weakness of scientific basis. In 1990s to support the weakness of scientific basis about polygraph, Farwell and Donchin proposed the P300-based concealed information test technique. The P300-based concealed information test has two strong points. First, the P300-based concealed information test is easy to conduct with polygraph. Second, the P300-based concealed information test has plentiful scientific basis. Nevertheless, the utilization of P300-based concealed information test is infrequent, because of the quantity of probe stimulus. The probe stimulus contains closed information that is relevant to the crime or other investigated situation. In tradition P300-based concealed information test protocol, three or more probe stimuli are necessarily needed. But it is hard to acquire three or more probe stimuli, because most of the crime relevant information is opened in investigative situation. In addition, P300-based concealed information test uses oddball paradigm, and oddball paradigm makes imbalance between the number of probe and irrelevant stimulus. Thus, there is a possibility that the unbalanced number of probe and irrelevant stimulus caused systematic underestimation of P300 amplitude of irrelevant stimuli. To overcome the these two limitation of P300-based concealed information test, one-probe P300-based concealed information test protocol is explored with various machine learning algorithms. According to this study, parameters of the modified one-probe protocol are as follows. In the condition of female and male face stimuli, the duration of stimuli are encouraged 400ms, the repetition of stimuli are encouraged 60 times, the analysis method of P300 amplitude is encouraged peak to peak method, the cut-off of guilty condition is encouraged 90% and the cut-off of innocent condition is encouraged 30%. In the condition of two-syllable word stimulus, the duration of stimulus is encouraged 300ms, the repetition of stimulus is encouraged 60 times, the analysis method of P300 amplitude is encouraged peak to peak method, the cut-off of guilty condition is encouraged 90% and the cut-off of innocent condition is encouraged 30%. It was also conformed that the logistic regression (LR), linear discriminant analysis (LDA), K Neighbors (KNN) algorithms were probable methods for analysis of P300 amplitude. The one-probe P300-based concealed information test with machine learning protocol is helpful to increase utilization of P300-based concealed information test, and supports to determine a person's truthfulness and credibility with the polygraph examination in criminal procedure.

Factor Influencing Unmet Healthcare Needs among People with Disabilities (장애인의 미충족의료 경험에 영향을 미치는 요인)

  • Bo Hui Park;Kyoung Eun Yeob;Eun Hye Choi;So Young Kim;Jong Hyock Park
    • Health Policy and Management
    • /
    • v.34 no.3
    • /
    • pp.271-281
    • /
    • 2024
  • Background: The unmet healthcare needs (UHNs) of people with disabilities (PWD) are not only detrimental to their quality of life but also can lead to serious health outcomes including death. A variety of factors including socioeconomic, personal, and environmental factors affect UHNs for PWD. Previous studies focused on individual socioeconomic and disability characteristics as influencing factors. Our studies included environmental factors that have a significant impact on the use of healthcare service by PWD. Methods: We analyzed the UHNs status and influencing factors among 4,326 adults with disabilities using the Korea Disability Life Data. Chisquare analysis identified differences in UHNs by general, disability, and environmental characteristics. Logistic regression determined factors affecting UHNs. Results: Those with low educational level (adjusted odds ratio [aOR], 1.229; 95% confidence interval [CI], 1.024-1.475), those with low income level (aOR, 1.416; 95% CI, 1.015-1.976), those who enrolled in private insurance (aOR, 1.234; 95% CI, 1.018-1.496), those who need help with daily living (aOR, 1.298; 95% CI, 1.059-1.592), those who did not go out (OR, 1.566; 95% CI, 1.274-1.924), those who use taxis (aOR, 1.407; 95% CI, 1.047-1.891) or call taxi for people with disabilities when going to the hospital (aOR, 1.370; 95% CI, 1.001-1.875), the communication disabled (aOR, 1.304; 95% CI, 1.029-1.651), those with poor subjective health status (aOR, 1.248; 95% CI, 1.043-1.494), those who felt the explanation of treatment results was insufficient (aOR, 4.035; 95% CI, 1.365-11.927), hose dissatisfied with healthcare services (aOR, 3.515; 95% CI, 2.741-4.508) were more likely to experience UHNs. Conclusion: Effective healthcare service provision for PWD requires not only financial assistance but also social support, along with education for healthcare staff, policies that consider the characteristics of disabilities.

Steel Plate Faults Diagnosis with S-MTS (S-MTS를 이용한 강판의 표면 결함 진단)

  • Kim, Joon-Young;Cha, Jae-Min;Shin, Junguk;Yeom, Choongsub
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.1
    • /
    • pp.47-67
    • /
    • 2017
  • Steel plate faults is one of important factors to affect the quality and price of the steel plates. So far many steelmakers generally have used visual inspection method that could be based on an inspector's intuition or experience. Specifically, the inspector checks the steel plate faults by looking the surface of the steel plates. However, the accuracy of this method is critically low that it can cause errors above 30% in judgment. Therefore, accurate steel plate faults diagnosis system has been continuously required in the industry. In order to meet the needs, this study proposed a new steel plate faults diagnosis system using Simultaneous MTS (S-MTS), which is an advanced Mahalanobis Taguchi System (MTS) algorithm, to classify various surface defects of the steel plates. MTS has generally been used to solve binary classification problems in various fields, but MTS was not used for multiclass classification due to its low accuracy. The reason is that only one mahalanobis space is established in the MTS. In contrast, S-MTS is suitable for multi-class classification. That is, S-MTS establishes individual mahalanobis space for each class. 'Simultaneous' implies comparing mahalanobis distances at the same time. The proposed steel plate faults diagnosis system was developed in four main stages. In the first stage, after various reference groups and related variables are defined, data of the steel plate faults is collected and used to establish the individual mahalanobis space per the reference groups and construct the full measurement scale. In the second stage, the mahalanobis distances of test groups is calculated based on the established mahalanobis spaces of the reference groups. Then, appropriateness of the spaces is verified by examining the separability of the mahalanobis diatances. In the third stage, orthogonal arrays and Signal-to-Noise (SN) ratio of dynamic type are applied for variable optimization. Also, Overall SN ratio gain is derived from the SN ratio and SN ratio gain. If the derived overall SN ratio gain is negative, it means that the variable should be removed. However, the variable with the positive gain may be considered as worth keeping. Finally, in the fourth stage, the measurement scale that is composed of selected useful variables is reconstructed. Next, an experimental test should be implemented to verify the ability of multi-class classification and thus the accuracy of the classification is acquired. If the accuracy is acceptable, this diagnosis system can be used for future applications. Also, this study compared the accuracy of the proposed steel plate faults diagnosis system with that of other popular classification algorithms including Decision Tree, Multi Perception Neural Network (MLPNN), Logistic Regression (LR), Support Vector Machine (SVM), Tree Bagger Random Forest, Grid Search (GS), Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). The steel plates faults dataset used in the study is taken from the University of California at Irvine (UCI) machine learning repository. As a result, the proposed steel plate faults diagnosis system based on S-MTS shows 90.79% of classification accuracy. The accuracy of the proposed diagnosis system is 6-27% higher than MLPNN, LR, GS, GA and PSO. Based on the fact that the accuracy of commercial systems is only about 75-80%, it means that the proposed system has enough classification performance to be applied in the industry. In addition, the proposed system can reduce the number of measurement sensors that are installed in the fields because of variable optimization process. These results show that the proposed system not only can have a good ability on the steel plate faults diagnosis but also reduce operation and maintenance cost. For our future work, it will be applied in the fields to validate actual effectiveness of the proposed system and plan to improve the accuracy based on the results.

A Time Series Graph based Convolutional Neural Network Model for Effective Input Variable Pattern Learning : Application to the Prediction of Stock Market (효과적인 입력변수 패턴 학습을 위한 시계열 그래프 기반 합성곱 신경망 모형: 주식시장 예측에의 응용)

  • Lee, Mo-Se;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.1
    • /
    • pp.167-181
    • /
    • 2018
  • Over the past decade, deep learning has been in spotlight among various machine learning algorithms. In particular, CNN(Convolutional Neural Network), which is known as the effective solution for recognizing and classifying images or voices, has been popularly applied to classification and prediction problems. In this study, we investigate the way to apply CNN in business problem solving. Specifically, this study propose to apply CNN to stock market prediction, one of the most challenging tasks in the machine learning research. As mentioned, CNN has strength in interpreting images. Thus, the model proposed in this study adopts CNN as the binary classifier that predicts stock market direction (upward or downward) by using time series graphs as its inputs. That is, our proposal is to build a machine learning algorithm that mimics an experts called 'technical analysts' who examine the graph of past price movement, and predict future financial price movements. Our proposed model named 'CNN-FG(Convolutional Neural Network using Fluctuation Graph)' consists of five steps. In the first step, it divides the dataset into the intervals of 5 days. And then, it creates time series graphs for the divided dataset in step 2. The size of the image in which the graph is drawn is $40(pixels){\times}40(pixels)$, and the graph of each independent variable was drawn using different colors. In step 3, the model converts the images into the matrices. Each image is converted into the combination of three matrices in order to express the value of the color using R(red), G(green), and B(blue) scale. In the next step, it splits the dataset of the graph images into training and validation datasets. We used 80% of the total dataset as the training dataset, and the remaining 20% as the validation dataset. And then, CNN classifiers are trained using the images of training dataset in the final step. Regarding the parameters of CNN-FG, we adopted two convolution filters ($5{\times}5{\times}6$ and $5{\times}5{\times}9$) in the convolution layer. In the pooling layer, $2{\times}2$ max pooling filter was used. The numbers of the nodes in two hidden layers were set to, respectively, 900 and 32, and the number of the nodes in the output layer was set to 2(one is for the prediction of upward trend, and the other one is for downward trend). Activation functions for the convolution layer and the hidden layer were set to ReLU(Rectified Linear Unit), and one for the output layer set to Softmax function. To validate our model - CNN-FG, we applied it to the prediction of KOSPI200 for 2,026 days in eight years (from 2009 to 2016). To match the proportions of the two groups in the independent variable (i.e. tomorrow's stock market movement), we selected 1,950 samples by applying random sampling. Finally, we built the training dataset using 80% of the total dataset (1,560 samples), and the validation dataset using 20% (390 samples). The dependent variables of the experimental dataset included twelve technical indicators popularly been used in the previous studies. They include Stochastic %K, Stochastic %D, Momentum, ROC(rate of change), LW %R(Larry William's %R), A/D oscillator(accumulation/distribution oscillator), OSCP(price oscillator), CCI(commodity channel index), and so on. To confirm the superiority of CNN-FG, we compared its prediction accuracy with the ones of other classification models. Experimental results showed that CNN-FG outperforms LOGIT(logistic regression), ANN(artificial neural network), and SVM(support vector machine) with the statistical significance. These empirical results imply that converting time series business data into graphs and building CNN-based classification models using these graphs can be effective from the perspective of prediction accuracy. Thus, this paper sheds a light on how to apply deep learning techniques to the domain of business problem solving.

Animal Infectious Diseases Prevention through Big Data and Deep Learning (빅데이터와 딥러닝을 활용한 동물 감염병 확산 차단)

  • Kim, Sung Hyun;Choi, Joon Ki;Kim, Jae Seok;Jang, Ah Reum;Lee, Jae Ho;Cha, Kyung Jin;Lee, Sang Won
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.4
    • /
    • pp.137-154
    • /
    • 2018
  • Animal infectious diseases, such as avian influenza and foot and mouth disease, occur almost every year and cause huge economic and social damage to the country. In order to prevent this, the anti-quarantine authorities have tried various human and material endeavors, but the infectious diseases have continued to occur. Avian influenza is known to be developed in 1878 and it rose as a national issue due to its high lethality. Food and mouth disease is considered as most critical animal infectious disease internationally. In a nation where this disease has not been spread, food and mouth disease is recognized as economic disease or political disease because it restricts international trade by making it complex to import processed and non-processed live stock, and also quarantine is costly. In a society where whole nation is connected by zone of life, there is no way to prevent the spread of infectious disease fully. Hence, there is a need to be aware of occurrence of the disease and to take action before it is distributed. Epidemiological investigation on definite diagnosis target is implemented and measures are taken to prevent the spread of disease according to the investigation results, simultaneously with the confirmation of both human infectious disease and animal infectious disease. The foundation of epidemiological investigation is figuring out to where one has been, and whom he or she has met. In a data perspective, this can be defined as an action taken to predict the cause of disease outbreak, outbreak location, and future infection, by collecting and analyzing geographic data and relation data. Recently, an attempt has been made to develop a prediction model of infectious disease by using Big Data and deep learning technology, but there is no active research on model building studies and case reports. KT and the Ministry of Science and ICT have been carrying out big data projects since 2014 as part of national R &D projects to analyze and predict the route of livestock related vehicles. To prevent animal infectious diseases, the researchers first developed a prediction model based on a regression analysis using vehicle movement data. After that, more accurate prediction model was constructed using machine learning algorithms such as Logistic Regression, Lasso, Support Vector Machine and Random Forest. In particular, the prediction model for 2017 added the risk of diffusion to the facilities, and the performance of the model was improved by considering the hyper-parameters of the modeling in various ways. Confusion Matrix and ROC Curve show that the model constructed in 2017 is superior to the machine learning model. The difference between the2016 model and the 2017 model is that visiting information on facilities such as feed factory and slaughter house, and information on bird livestock, which was limited to chicken and duck but now expanded to goose and quail, has been used for analysis in the later model. In addition, an explanation of the results was added to help the authorities in making decisions and to establish a basis for persuading stakeholders in 2017. This study reports an animal infectious disease prevention system which is constructed on the basis of hazardous vehicle movement, farm and environment Big Data. The significance of this study is that it describes the evolution process of the prediction model using Big Data which is used in the field and the model is expected to be more complete if the form of viruses is put into consideration. This will contribute to data utilization and analysis model development in related field. In addition, we expect that the system constructed in this study will provide more preventive and effective prevention.

Factors Affecting International Transfer Pricing of Multinational Enterprises in Korea (외국인투자기업의 국제이전가격 결정에 영향을 미치는 환경 및 기업요인)

  • Jun, Tae-Young;Byun, Yong-Hwan
    • Korean small business review
    • /
    • v.31 no.2
    • /
    • pp.85-102
    • /
    • 2009
  • With the continued globalization of world markets, transfer pricing has become one of the dominant sources of controversy in international taxation. Transfer pricing is the process by which a multinational corporation calculates a price for goods and services that are transferred to affiliated entities. Consider a Korean electronic enterprise that buys supplies from its own subsidiary located in China. How much the Korean parent company pays its subsidiary will determine how much profit the Chinese unit reports in local taxes. If the parent company pays above normal market prices, it may appear to have a poor profit, even if the group as a whole shows a respectable profit margin. In this way, transfer prices impact the taxable income reported in each country in which the multinational enterprise operates. It's importance lies in that around 60% of international trade involves transactions between two related parts of multinationals, according to the OECD. Multinational enterprises (hereafter MEs) exert much effort into utilizing organizational advantages to make global investments. MEs wish to minimize their tax burden. So MEs spend a fortune on economists and accountants to justify transfer prices that suit their tax needs. On the contrary, local governments are not prepared to cope with MEs' powerful financial instruments. Tax authorities in each country wish to ensure that the tax base of any ME is divided fairly. Thus, both tax authorities and MEs have a vested interest in the way in which a transfer price is determined, and this is why MEs' international transfer prices are at the center of disputes concerned with taxation. Transfer pricing issues and practices are sometimes difficult to control for regulators because the tax administration does not have enough staffs with the knowledge and resources necessary to understand them. The authors examine transfer pricing practices to provide relevant resources useful in designing tax incentives and regulation schemes for policy makers. This study focuses on identifying the relevant business and environmental factors that could influence the international transfer pricing of MEs. In this perspective, we empirically investigate how the management perception of related variables influences their choice of international transfer pricing methods. We believe that this research is particularly useful in the design of tax policy. Because it can concentrate on a few selected factors in consideration of the limited budget of the tax administration with assistance of this research. Data is composed of questionnaire responses from foreign firms in Korea with investment balances exceeding one million dollars in the end of 2004. We mailed questionnaires to 861 managers in charge of the accounting departments of each company, resulting in 121 valid responses. Seventy six percent of the sample firms are classified as small and medium sized enterprises with assets below 100 billion Korean won. Reviewing transfer pricing methods, cost-based transfer pricing is most popular showing that 60 firms have adopted it. The market-based method is used by 31 firms, and 13 firms have reported the resale-pricing method. Regarding the nationalities of foreign investors, the Japanese and the Americans constitute most of the sample. Logistic regressions have been performed for statistical analysis. The dependent variable is binary in that whether the method of international transfer pricing is a market-based method or a cost-based method. This type of binary classification is founded on the belief that the market-based method is evaluated as the relatively objective way of pricing compared with the cost-based methods. Cost-based pricing is assumed to give mangers flexibility in transfer pricing decisions. Therefore, local regulatory agencies are thought to prefer market-based pricing over cost-based pricing. Independent variables are composed of eight factors such as corporate tax rate, tariffs, relations with local tax authorities, tax audit, equity ratios of local investors, volume of internal trade, sales volume, and product life cycle. The first four variables are included in the model because taxation lies in the center of transfer pricing disputes. So identifying the impact of these variables in Korean business environments is much needed. Equity ratio is included to represent the interest of local partners. Volume of internal trade was sometimes employed in previous research to check the pricing behavior of managers, so we have followed these footsteps in this paper. Product life cycle is used as a surrogate of competition in local markets. Control variables are firm size and nationality of foreign investors. Firm size is controlled using dummy variables in that whether or not the specific firm is small and medium sized. This is because some researchers report that big firms show different behaviors compared with small and medium sized firms in transfer pricing. The other control variable is also expressed in dummy variable showing if the entrepreneur is the American or not. That's because some prior studies conclude that the American management style is different in that they limit branch manger's freedom of decision. Reviewing the statistical results, we have found that managers prefer the cost-based method over the market-based method as the importance of corporate taxes and tariffs increase. This result means that managers need flexibility to lessen the tax burden when they feel taxes are important. They also prefer the cost-based method as the product life cycle matures, which means that they support subsidiaries in local market competition using cost-based transfer pricing. On the contrary, as the relationship with local tax authorities becomes more important, managers prefer the market-based method. That is because market-based pricing is a better way to maintain good relations with the tax officials. Other variables like tax audit, volume of internal transactions, sales volume, and local equity ratio have shown only insignificant influence. Additionally, we have replaced two tax variables(corporate taxes and tariffs) with the data showing top marginal tax rate and mean tariff rates of each country, and have performed another regression to find if we could get different results compared with the former one. As a consequence, we have found something different on the part of mean tariffs, that shows only an insignificant influence on the dependent variable. We guess that each company in the sample pays tariffs with a specific rate applied only for one's own company, which could be located far from mean tariff rates. Therefore we have concluded we need a more detailed data that shows the tariffs of each company if we want to check the role of this variable. Considering that the present paper has heavily relied on questionnaires, an effort to build a reliable data base is needed for enhancing the research reliability.