• Title/Summary/Keyword: Logic Rules

Search Result 481, Processing Time 0.03 seconds

Hand Gesture Recognition Using an Infrared Proximity Sensor Array

  • Batchuluun, Ganbayar;Odgerel, Bayanmunkh;Lee, Chang Hoon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.15 no.3
    • /
    • pp.186-191
    • /
    • 2015
  • Hand gesture is the most common tool used to interact with and control various electronic devices. In this paper, we propose a novel hand gesture recognition method using fuzzy logic based classification with a new type of sensor array. In some cases, feature patterns of hand gesture signals cannot be uniquely distinguished and recognized when people perform the same gesture in different ways. Moreover, differences in the hand shape and skeletal articulation of the arm influence to the process. Manifold features were extracted, and efficient features, which make gestures distinguishable, were selected. However, there exist similar feature patterns across different hand gestures, and fuzzy logic is applied to classify them. Fuzzy rules are defined based on the many feature patterns of the input signal. An adaptive neural fuzzy inference system was used to generate fuzzy rules automatically for classifying hand gestures using low number of feature patterns as input. In addition, emotion expression was conducted after the hand gesture recognition for resultant human-robot interaction. Our proposed method was tested with many hand gesture datasets and validated with different evaluation metrics. Experimental results show that our method detects more hand gestures as compared to the other existing methods with robust hand gesture recognition and corresponding emotion expressions, in real time.

Fuzzy Rule Optimization Using Genetic Algorithms with Adaptive Probability (적응 확률을 갖는 유전자 알고리즘을 사용한 퍼지규칙의 최적화)

  • 정성훈
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.6 no.2
    • /
    • pp.43-51
    • /
    • 1996
  • Fuzzy rules in fuzzy logic control play a major role in deciding the control dynamics of a fuzzy logic controller. Thus, control performance is mainly determined by the quality of fuzzy rules. This paper introduces an optimization method for fuzzy rules using GAS with adaptive probabilies of crossover and mutation. Also we design two fitness measures to satisfy control objectives by partitioning the response of a plant into two parts. An initial population is generated by an automatic fuzzy rule generation method instead of random selection for fast a.pproaching to the final solution. We employed a nonlinear plant to simulate our method. It is shown through simulation that our method is reasonable and can be useful for optimizing fuzzy rules.

  • PDF

Control of Hydraulic Excavator Using Self Tuning Fuzzy Sliding Mode Control (자기 동조형 퍼지 슬라이딩 모드 제어를 이용한 유압 굴삭기의 제어)

  • Kim Dongsik;Kim Dongwon;Park Gwi-Tae;Seo Sam-Jun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.2
    • /
    • pp.160-166
    • /
    • 2005
  • In this paper, to overcome drawbacks of FLC a self tuning fuzzy sliding mode controller is proposed, which controls the position of excavator's attachment, which can be regarded as an ill-defined system. It is reported that fuzzy logic theory is especially useful in the control of ill-defined system. It is important in the design of a FLC to derive control rules in which the system's dynamic characteristics are taken into account. Control rules are usually established using trial and error methods. However, in the case where the dynamic characteristics vary with operating conditions, as in the operation of excavator attachment, it is difficult to find out control rules in which all the working condition parameters are considered. Experiments are carried out on a test bed which is built around a commercial Hyundai HX-60W hydraulic excavator. The experimental results show that both alleviation of chattering and performance are achieved. Fuzzy rules are easily obtained by using the proposed method and good performance in the following the desired trajectory is achieved. In summary, the proposed controller is very effective control method for the position control of the excavator's attachment.

Fault Diagnosis in Gas Turbine Engine Using Fuzzy Inference Logic (퍼지 로직 시스템을 이용한 항공기 가스터빈 엔진 오류 검출에 대한 연구)

  • Mo, Eun-Jong;Jie, Min-Seok;Kim, Chin-Su;Lee, Kang-Woong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.1
    • /
    • pp.49-53
    • /
    • 2008
  • A fuzzy inference logic system is proposed for gas turbine engine fault isolation. The gas path measurements used for fault isolation are exhaust gas temperature, low and high rotor speed, and fuel flow. The fuzzy inference logic uses rules developed from a model of performance influence coefficients to isolate engine faults while accounting for uncertainty in gas path measurements. Inputs to the fuzzy inference logic system are measurement deviations of gas path parameters which are transferred directly from the ECM(Engine Control Monitoring) program and outputs are engine module faults. The proposed fuzzy inference logic system is tested using simulated data developed from the ECM trend plot reports and the results show that the proposed fuzzy inference logic system isolates module faults with high accuracy rate in the environment of high level of uncertainty.

Adaptive Control of Robot Manipulator using Neuvo-Fuzzy Controller

  • Park, Se-Jun;Yang, Seung-Hyuk;Yang, Tae-Kyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.161.4-161
    • /
    • 2001
  • This paper presents adaptive control of robot manipulator using neuro-fuzzy controller Fuzzy logic is control incorrect system without correct mathematical modeling. And, neural network has learning ability, error interpolation ability of information distributed data processing, robustness for distortion and adaptive ability. To reduce the number of fuzzy rules of the FLS(fuzzy logic system), we consider the properties of robot dynamic. In fuzzy logic, speciality and optimization of rule-base creation using learning ability of neural network. This paper presents control of robot manipulator using neuro-fuzzy controller. In proposed controller, fuzzy input is trajectory following error and trajectory following error differential ...

  • PDF

Multivariable Fuzzy Logic Controller using Decomposition of Control Rules (제어규칙 분해법을 이용한 다변수 퍼지 논리 제어기)

  • Lee, Pyeong-Gi
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.9 no.3
    • /
    • pp.173-178
    • /
    • 2006
  • For the design of multivariable fuzzy control systems decomposition of control rules is a efficent inference method since it alleviates the complexity of the problem. In some systems, however, inference error of the Gupta's decomposition method is inevitable because of its approximate nature. In this paper we define indices of applicability which decides whether the decomposition method can be applied to a multivariable fuzzy system or not.

  • PDF

Design of Nonlinear Model Using Type-2 Fuzzy Logic System by Means of C-Means Clustering (C-Means 클러스터링 기반의 Type-2 퍼지 논리 시스템을 이용한 비선형 모델 설계)

  • Baek, Jin-Yeol;Lee, Young-Il;Oh, Sung-Kwun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.6
    • /
    • pp.842-848
    • /
    • 2008
  • This paper deal with uncertainty problem by using Type-2 fuzzy logic set for nonlinear system modeling. We design Type-2 fuzzy logic system in which the antecedent and the consequent part of rules are given as Type-2 fuzzy set and also analyze the performance of the ensuing nonlinear model with uncertainty. Here, the apexes of the antecedent membership functions of rules are decided by C-means clustering algorithm and the apexes of the consequent membership functions of rules are learned by using back-propagation based on gradient decent method. Also, the parameters related to the fuzzy model are optimized by means of particle swarm optimization. The proposed model is demonstrated with the aid of two representative numerical examples, such as mathematical synthetic data set and Mackey-Glass time series data set and also we discuss the approximation as well as generalization abilities for the model.

Granule-based Association Rule Mining for Big Data Recommendation System (빅데이터 추천시스템을 위한 과립기반 연관규칙 마이닝)

  • Park, In-Kyu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.3
    • /
    • pp.67-72
    • /
    • 2021
  • Association rule mining is a method of showing the relationship between patterns hidden in several tables. These days, granulation logic is used to add more detailed meaning to association rule mining. In addition, unlike the existing system that recommends using existing data, the granulation related rules can also recommend new subscribers or new products. Therefore, determining the qualitative size of the granulation of the association rule determines the performance of the recommendation system. In this paper, we propose a granulation method for subscribers and movie data using fuzzy logic and Shannon entropy concepts in order to understand the relationship to the movie evaluated by the viewers. The research is composed of two stages: 1) Identifying the size of granulation of data, which plays a decisive role in the implications of the association rules between viewers and movies; 2) Mining the association rules between viewers and movies using these granulations. We preprocessed Netflix's MovieLens data. The results of meanings of association rules and accuracy of recommendation are suggested with managerial implications in conclusion section.

Design of Fuzzy Logic Controller for Robot Manipulators in the VSS Control Scheme

  • Yi, Soo-Yeong;Chung, Myung-Jin
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1207-1210
    • /
    • 1993
  • There is an opinion of regarding a simple fuzzy logic controller as a kind of Variable Structure Controller in recent years. The opinion may provide an analytical basis which describes the robustness to uncertainty and the stability of a fuzzy logic controller. So in this paper, a fuzzy logic controller based on the Variable Structure System with is designed for a robot manipulator which is a class of complex, nonlinear system with uncertainty. Fuzzy control rules, membership shape of the I/O variables of the fuzzy logic controller are designed for guaranteeing the stability of an overall control system. From a computer simulation of dynamic control of a two link robot manipulator, the design procedure of the fuzzy logic controller is validated.

  • PDF

Semantics for Default Rules

  • Yeom, Jae-Il
    • Language and Information
    • /
    • v.4 no.2
    • /
    • pp.69-92
    • /
    • 2000
  • It is well-known that default rules require a nonmonotonic logic. Veltman proposed one dynamic theory which interprets default rules in such a way that correct inferences can be made at each information state. But his theory has some problems. First, this theory excludes the possibility that a default rule can be true of false. Second, his representation of an information state makes it difficult to interpret a default rule embedded in another sentence. Third, the notion of a frame which is introduced in the interpretation of a default rule and the adjustment of inferential expectation has a more complex structure than is necessary, In this paper, I propose a truth-conditional theory of default rules in which the meaning of a default rule is defined as a truth-condition in a possible world and which assumes a simpler structure of a frame. This makes it possible to interpret a default rule embedded in a sentence. A dynamic theory for default rules is also proposed for correct inferences based on default rules.

  • PDF