• Title/Summary/Keyword: Location-based Logistics

Search Result 126, Processing Time 0.03 seconds

A Study on Object Recognition for Safe Operation of Hospital Logistics Robot Based on IoT (IoT 기반의 병원용 물류 로봇의 안전한 운행을 위한 장애물 인식에 관한 연구)

  • Kang, Min-soo;Ihm, Chunhwa;Lee, Jaeyeon;Choi, Eun-Hye;Lee, Sang Kwang
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.2
    • /
    • pp.141-146
    • /
    • 2017
  • New infectious diseases such as MERS have been in need of many measures such as initial discovery, isolation, and crisis response. In addition, the culture of hospitals is changing, such as the general public 's visiting and Nursing Care Integration Services. However, as the qualifications and regulations of medical personnel in hospitals become rigid, overseas such as linens, wastes movements are replacing possible works with robots. we have developed a hospital logistics robot that can carry out various goods delivery within a hospital, and can move various kinds of objects safely to a desired location. In this thesis, we have studied a hospital logistics robot that can carry out various kinds of goods delivery within the hospital, and can move various kinds of objects such as waste, and linen safely to a desired location. The movement of a robot in a hospital may cause a collision between a person and an object, so that the collision must be prevented. In order to prevent collision, it is necessary to recognize whether or not an object exists in the movement path of the robot. And if there is an object, it should recognize whether it moves or not. In order to recognize human beings and objects, we recognize the person with face/body recognition technology and generate the context awareness of the object using 3D Vision image segmentation technology. We use the generated information to create a map that considers objects and person in the robot moving range. Thus, the robot can be operated safely and efficiently.

Integrated Decision-making for Sequencing and Storage Location of Export Containers at a Receiving Operation in the Container Terminal with a Perpendicular Layout (수직 배치형 컨테이너 터미널 반입작업에서 수출 컨테이너의 작업순서와 장치위치 통합 의사결정)

  • Bae, Jong-Wook;Park, Young-Man
    • Journal of Navigation and Port Research
    • /
    • v.35 no.8
    • /
    • pp.657-665
    • /
    • 2011
  • This study deals with an integrated problem for deciding sequencing and storage location of export containers together at its receiving operation in the container terminal with a perpendicular layout. The preferred storage location of an export container varies with the priority of the corresponding loading operation and the waiting time of an external truck depends on its storage time. This paper proposes the mixed integer programming model considering the expected arrival time and expected finish time of an external truck and the preferred storage location for its loading operation. And we suggest the heuristic algorithm based on a simulated annealing algorithm for real world adaption. We compare the heuristic algorithm with the optimum model in terms of the computation times and total cost and the performance of the heuristic algorithm is analyzed through a numerical experiment.

A study on The Process Improvement of Logistics based on The Lean Six Sigma Methodology (Lean Six Sigma 기반의 물류 프로세스 개선 방법론)

  • Nam, Ho-Ki;Park, Sang-Min
    • Journal of the Korea Safety Management & Science
    • /
    • v.11 no.3
    • /
    • pp.121-129
    • /
    • 2009
  • Today, many companies will be isolated in competition if they do not have competitive power to overcome quick change and big crisis of market. Nowadays, globally high-grade companies have done their best for increasing their competitive power through a many kinds of methods in keen competition for making of pacesetting position. This study focuses on distribution with the domains like capacity, layout, amount of location, assignment of product, operation procedure and operation rule in order to improve these domains, we make a further application of eight analysis ways based on DMAIC method for improving operation of processes of distribution center as the third profit source. The purpose of this study is to seek an approach that can easily adopt of Lean Six Sigma in operational management of distribution center by a kind of data, analysis method and template.

A Pickup and Delivery Problem Based on AVL and GIS

  • Hwang, Heung-Suk
    • Industrial Engineering and Management Systems
    • /
    • v.2 no.1
    • /
    • pp.28-34
    • /
    • 2003
  • The fundamental design issues that arise in the pickup and delivery system planning are optimizing the system with minimum cost and maximum throughput and service level. This study is concerned with the development of pickup and delivery system with customer responsive service level, DCM(Demand Chain Management). The distribution process and service map are consisted of manufacturing, warehousing, and pickup and delivery. First we formulated the vehicle pickup and delivery problem using GIS-VRP method so as to satisfy the customer service requests. Second, we developed a GUI-type computer program using AVL, automated vehicle location system. The computational results show that the proposed method is very effective on a set of test problems.

A Comparison of Deep Learning Models for IQ Fingerprint Map Based Indoor Positioning in Ship Environments

  • Yootae Shin;Qianfeng Lin;Jooyoung Son
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.4
    • /
    • pp.1122-1140
    • /
    • 2024
  • The importance of indoor positioning has grown in numerous application areas such as emergency response, logistics, and industrial automation. In ships, indoor positioning is also needed to provide services to passengers on board. Due to the complex structure and dynamic nature of ship environments, conventional positioning techniques have limitations in providing accurate positions. Compared to other indoor positioning technologies, Bluetooth 5.1-based indoor positioning technology is highly suitable for ship environments. Bluetooth 5.1 attains centimeter-level positioning accuracy by collecting In-phase and Quadrature (IQ) samples from wireless signals. However, distorted IQ samples can lead to significant errors in the final estimated position. Therefore, we propose an indoor positioning method for ships that utilizes a Deep Neural Network (DNN) combined with IQ fingerprint maps to overcome the challenges associated with accurate location detection within the ship. The results indicate that the accuracy of our proposed method can reach up to 97.76%.

A Study on RFID Based QoS Guarantee between O/D Container terminals for Biz-Model (RFID을 활용한 기종점 컨테이너 터미널간 QoS 보장을 위한 비즈니스 모델 연구)

  • Park Doo-Jin;Kim Hyun;Nam Ki-Chan
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2005.10a
    • /
    • pp.303-309
    • /
    • 2005
  • This paper will suggest how can we guarantee terminal QoS like ship waiting time ratio and ship residing time applying RFID(Radio Frequence Identification) technology, raising up rapidly as a fundamental solution of new growing industry, to port information system. Also, lead time of whole port logistics can be decreased for reduction of loading & discharging time resulted from productivity improvement of Twinlift G/C(Gantry Crane) and Y/T(Yard Tract) etc as applying RFID technology to terminal operation. The purpose of this paper is suggesting of new business model of u-Port that port QoS can be guaranteed from mutual agreement of each terminals RFID technology applied and focusing on the implementation plan.

  • PDF

Basic Study on the Assembly Process Design of Curtain-wall System for Minimization of Carbon Emission

  • Yi, June-Seong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.6
    • /
    • pp.648-663
    • /
    • 2012
  • With recent attempts to improve quality and productivity, the prefabrication manufacturing system has been occupying an increasing share of the construction area. To minimize site work, material is more frequently being produced and partially assembled at a plant, and then installed at a site. For this reason, the production process is being divided and the materials are being delivered to the site after passing through multiple plants. With these changes in the production process, the materials delivery plan is becoming an important management point. In particular, as road transportation using trucks has a 71 percent share of the domestic transportation market, selecting the proper transportation path is important when delivering materials and equipment to a site. But the management system at the project design phase to calculate the delivery cost by considering the production process of the pre-fab material and the $CO_2$ emission at the material delivery phase is currently lacking. This study suggests a process design model for assembly production of the pre-fab material and transportation logistics based on carbon emission. The suggested model can be helpful to optimize the location of the intermediate plant. It is expected to be utilized as a basic model at the project plan and design phase when subcontractors make decisions on items such as materials procurement, selecting the production method, and choosing the location of the assembly plant.

A Study on the Selecting Factors of Manufacturing and Logistic Hub in Far Eastern Area (극동지역 제조 및 물류거점 선정요인 중요도 분석에 관한 연구)

  • Kim, Hak-so;Han, Ji-young
    • Journal of Korea Port Economic Association
    • /
    • v.32 no.4
    • /
    • pp.29-39
    • /
    • 2016
  • As geopolitical, archaeological and strategic interests on cooperation with countries in the Far Eastern Area is gradually increased, countries are competing to attract or install a logistics or manufacturing hub in their countries. In this study, we investigated the relative importance of factors on the main three and nine detailed criteria from the domestic and overseas experts on Far Eastern Area. Using AHP(Analytic Hierarchy Process) analysis, priority importance of factors was derived. As a result, we find that the most important factor was economic factor. In detail, industrial complex creation was the highest factor and the institutional guarantees for the investment on policy and transportation network was second highest factor. Based on analysis result, specific competitiveness level in the 10 region of Far East was follows. Hunchun, Vladivostok, Yanji, Tumen, Rajin, Hassan, Ussuriysk, Cheongjin, Mihaylov Skiing, Nije Jeuchinski were showed in order. Hunchun showed the highest competitive level in location, topography, compliance to the around cities, transportation network, industrial complex, excellence in logistics facilities, long-term investment plans, institutional guarantees for investment, customs efficiency and political stability. However, in other factors such as population and number of households, public facilities, potential demand and resource utilization, Vladivostok showed the highest level.

Freight and Fleet Optimization Models under CVO Environment (CVO 환경을 고려한 차량 및 화물 운송 최적 모델)

  • Choe Gyeong-Hyeon;Pyeon Je-Beom;Gwak Ho-Man
    • Proceedings of the Society of Korea Industrial and System Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.209-215
    • /
    • 2002
  • In this paper, we propose a freight and fleet optimization model under CVO environment. The model is a kind of multi commodity network flow model based on Vehicle Routing Problem(VRP) and Vehicle Scheduling Problem(VSP), and considering operations and purposes of CVO. The main purpose of CVO is the freight and fleet management to reduce logistics cost and to Improve in vehicle safety. Thus, the objective of this model is to minimize routing cost of all the vehicle and to find the location of commodities which have origin and destination. We also present some computing test results.

  • PDF

Locating Idle Vehicles in Tandem-Loop Automated Guided Vehicle Systems to Minimize the Maximum Response Time

  • Lee, Shiwoo
    • Industrial Engineering and Management Systems
    • /
    • v.6 no.2
    • /
    • pp.125-135
    • /
    • 2007
  • An automated guided vehicle (AGV) system is a group of collaborating unmanned vehicles which is commonly used for transporting materials within manufacturing, warehousing, or distribution systems. The performance of an AGV system depends on the dispatching rules used to assign vehicles to pickup requests, the vehicle routing protocols, and the home location of idle vehicles, which are called dwell points. In manufacturing and distribution environments which emphasize just-in-time principles, performance measures for material handling are based on response times for pickup requests and equipment utilization. In an AGV system, the response time for a pickup request is the time that it takes for the vehicle to travel from its dwell point to the pickup station. In this article, an exact dynamic programming algorithm for selecting dwell points in a tandem-loop multiple-vehicle AGV system is presented. The objective of the model is to minimize the maximum response time for all pickup requests in a given shift. The recursive algorithm considers time restrictions on the availability of vehicles during the shift.