• Title/Summary/Keyword: Location tracking buoy

Search Result 5, Processing Time 0.015 seconds

Surface Current Measurement by Tracking a Buoy Drifted from Mara-do (마라도에서 표류된 부이의 위치추적을 이용한 표층류의 실측정보)

  • Ryu Hwangjin;Song Museok;Jung Jinyoung;Ahn Yongho
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.5 no.4
    • /
    • pp.41-47
    • /
    • 2002
  • The surface current in the region from Mara-do to mid of the Pacific has been measured by tracking the position of a buoy. The buoy was accidentally released from its original location, near Mara-do, and it has been drifting following the surface current. The tracking started on 27 December 2001 and continued until 29 June 2002. We combined the trace oi the buoy with the wind data available.

  • PDF

Analysis of the estuary outflow characteristics of floating debris in the downstream of Nakdong River using satellite location tracking buoys (위성 위치 추적 부이를 활용한 낙동강 하류 부유쓰레기의 하구 유출 특성 분석)

  • Jang, Seon-Woong;Yoon, Hong-Joo;Seo, Won-Chan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.2
    • /
    • pp.157-164
    • /
    • 2015
  • The present study is to identify discharge characteristic from the mouth of floating debris in the Nakdong River through real time tracking of moving route and by analyzing hydrometeorologic environmental. To identify the path and route of outflow through the mouth of the river of floating debris, small-sized buoy equipped with satellite location transmitters was used. Moreover, to identify hydrometeorologic environmental, flux of the river, change of discharge of the River-Mouth Weir and wind direction of the mouth of the river area were analyzed. From now on, the present study is expected to be utilized as basic data to identify damage and flowing into nearby ocean of the floating debris of Nakdong River in time of severe rain storm.

Behavior Characteristics of Floating Debris Spilled from the Nakdong River (낙동강 유출 부유쓰레기의 거동 특성)

  • Jang, Seon Woong;Kim, Dae Hyun;Chung, Yong Hyun;Yoon, Hong-Joo
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.1
    • /
    • pp.127-136
    • /
    • 2014
  • When the mouth of the Nakdong River, opens its floodgate, thousands of tons of litter should flown into the South Sea, moving towards nearby coast, thus causing serious social and economic damage. For this reason, in the present study, research was performed on one certain area in northeast coast of Geoje island, which is assumed as area damaged due to rainy season and typhoon in 2012, and research for trace of movement route was implemented by using buoy to identify characteristic of movement of floating debris caused from Nakdong River. Flows related to the movement of floating debris was also identified by analyzing ocean meteorological environment. As a result of the study, total 40 tons of litter composed of grasses and trees(or plants litter) were flown into Heungnam beach on 16th, Jul which is the rainy season. Plus, the location tracking buoy, which was dropped when the typhoon SANBA was coming, was passed by southern sea of Gadeok-do and was flown into Geoje beach 1 ~ 2 days after it was dropped. The wind direction was mostly northeasterly wind around the Geoje beach at the time the buoy and floating debris were flown into northeast coast and there was common sea surface currents which was flowing into the coast.

Tracking Experimentation of Floating Debris Drained From Nak-Dong River (낙동강 유입 부유폐기물 해상이동경로 추적시험)

  • Yu J. S.;Lee M. J.;Rho J. H.;Yoon S. H.;Kim M. H.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.5 no.3
    • /
    • pp.3-9
    • /
    • 2002
  • When a flooding a lot of debris are drained from rivet. Drained debris separated lodgement debris and floating debris, and floating debris moving other region by wind and ocean current. This experimentation throw three buoys which installed with DGPS and other devices in nak-dong river, and check there location every minute. In consequence of this experimentation, floating debris drained nak-dong river are gathered near Dadaepo seaside or drifted Dong hae. Ocean current and wind driven current are largely influenced then tide. Numerical analysis calculated by MAPCNTR(develop by KRISO) is similar to the result of this experimentation.

  • PDF

Application of Remote Sensing Techniques to Survey and Estimate the Standing-Stock of Floating Debris in the Upper Daecheong Lake (원격탐사 기법 적용을 통한 대청호 상류 유입 부유쓰레기 조사 및 현존량 추정 연구)

  • Youngmin Kim;Seon Woong Jang ;Heung-Min Kim;Tak-Young Kim;Suho Bak
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_1
    • /
    • pp.589-597
    • /
    • 2023
  • Floating debris in large quantities from land during heavy rainfall has adverse social, economic, and environmental impacts, but the monitoring system for the concentration area and amount is insufficient. In this study, we proposed an efficient monitoring method for floating debris entering the river during heavy rainfall in Daecheong Lake, the largest water supply source in the central region, and applied remote sensing techniques to estimate the standing-stock of floating debris. To investigate the status of floating debris in the upper of Daecheong Lake, we used a tracking buoy equipped with a low-orbit satellite communication terminal to identify the movement route and behavior characteristics, and used a drone to estimate the potential concentration area and standing-stock of floating debris. The location tracking buoys moved rapidly during the period when the cumulative rainfall for 3 days increased by more than 200 to 300 mm. In the case of Hotan Bridge, which showed the longest distance, it moved about 72.8 km for one day, and the maximum moving speed at this time was 5.71 km/h. As a result of calculating the standing-stock of floating debris using a drone after heavy rainfall, it was found to be 658.8 to 9,165.4 tons, with the largest amount occurring in the Seokhori area. In this study, we were able to identify the main concentrations of floating debris by using location-tracking buoys and drones. It is believed that remote sensing-based monitoring methods, which are more mobile and quicker than traditional monitoring methods, can contribute to reducing the cost of collecting and processing large amounts of floating debris that flows in during heavy rain periods in the future.