• 제목/요약/키워드: Location concentration

검색결과 557건 처리시간 0.03초

Investigation of 180W separation by transient single withdrawal cascade using Salp Swarm optimization algorithm

  • Morteza Imani;Mahdi Aghaie
    • Nuclear Engineering and Technology
    • /
    • 제55권4호
    • /
    • pp.1225-1232
    • /
    • 2023
  • The 180W is the lightest isotope of Tungsten with small abundance ratio. It is slightly radioactive (α decay), with an extremely long half-life. Its separation is possible by non-conventional single withdrawal cascades. The 180W is used in radioisotopes production and study of metals through gamma-ray spectroscopy. In this paper, single withdrawal cascade model is developed to evaluate multicomponent separation in non-conventional transient cascades, and available experimental results are used for validation. Numerical studies for separation of 180W in a transient single withdrawal cascade are performed. Parameters affecting the separation and equilibrium time of cascade such as number of stages, cascade arrangements, feed location and flow rate for a fixed number of gas centrifuges (GC) are investigated. The Salp Swarm Algorithm (SSA) as a bio-inspired optimization algorithm is applied as a novel method to minimize the feed consumption to obtain desired concentration in the collection tank. Examining different cascade arrangements, it is observed in arrangements with more stages, the separation is further efficient. Based on the obtained results, with increasing feed flow rate, for fixed product concentration, the cascade equilibrium time decreases. Also, it is shown while the feed location is the farthest stage from the collection tank, the separation and cascade equilibrium time are well-organized. Finally, using SSA optimal parameters of the cascade is calculated, and optimal arrangement to produce 5 gr of 180W with 90% concentration in the tank, is proposed.

Interfacial Stress Concentrations of Vertical Through-plate to H-beam Connections in CFT Column

  • Choi, Insub;Chang, HakJong;Kim, JunHee
    • 국제초고층학회논문집
    • /
    • 제9권4호
    • /
    • pp.325-334
    • /
    • 2020
  • This paper aims to evaluate the interfacial stress concentrations on connection between vertical through-plate and H-beam in CFT column. Full-scale experiments were performed on three specimens with varying thickness of the vertical through-plate to investigate the interfacial stress concentration factor in the connections. The specimens underwent brittle failure at the location where the steel beam is connected to the vertical through-plate before the steel beam reached its plastic moment. The strain data of the part were analyzed, and the sectional analyses were conducted to determine appropriate residual stress models. In addition, the stress concentration factor was quantified by comparing the analytical local behavior in which the stress concentration is not reflected and the experimental data reflecting the stress concentration. The results showed that the maximum reduction of the stress concentration factor due to an increase in the thickness of the vertical through-plate is 50.3%.

OFDMA 시스템에서 단말기의 위치정보를 이용한 상향링크 전력제어 및 부채널 할당 (Uplink Power Control and Sub-channel Allocation depending on the location of Mobile Station in OFDMA system)

  • 김대호;김환우
    • 한국정보통신학회논문지
    • /
    • 제10권1호
    • /
    • pp.15-22
    • /
    • 2006
  • OFDMA 시스템에서 단말기는 기지국과 같이 최소 1개부터 최대일 때 부채널 전부를 사용할 수 있지만 단말기의 송신전력은 기지국보다 낮게 설계되기 때문에 부채널 전부를 사용할 수 있는 거리(FLR : full loading range)의 제한이 생기고 FLR 외부에 위치한 단말은 기존의 개방루프 전력제어 방식을 사용할 수 없는 문제가 발생한다. 본 논문에서는 OFDMA 시 스템의 ranging 정보를 이용하여 단말기의 위치를 파악하고 단말기의 위치에 따라서 사용가능한 부채널수를 제한하고 PCG(power concentration gain)를 인가하는 방식을 제안하였다. 시뮬레이션을 통한 실험 결과에서 제안된 방식은 단말기의 위치에 따라서 상향링크 무선자원의 최적 활용을 가능하게 하며 FLR 외부에서 개방루프 전력 제어가 별도의 하드웨어 없이 가능함을 확인하였다.

유치원 교실에서 공기 중 박테리아와 곰팡이 발생에 영향을 미치는 요인 (Factors Influencing Airborne Concentration of Fungi, Bacteria and Gram Negative Bacteria in Kindergarten Classroom)

  • 박동욱;조경아;윤충식;한인영;박두용
    • 한국환경보건학회지
    • /
    • 제30권5호
    • /
    • pp.440-448
    • /
    • 2004
  • Airborne bacteria, gram negative bacteria (GNB) and fungi were measured in 70 class of 17 kindergartens. The objective of this study is to identify the factors influencing airborne concentrations of bacteria, GNB and fungi using multiple regression analysis. The average concentrations of bacteria and fungi exceeded $1,000\;CFU/m^3$. The average of GNB was $3.7{\times}10^2\;CFU/m^3$. This results indicated that air of kindergartens was contaminated with microbes such as bacteria and fungi. ANOVA test found that the concentrations of bacteria, GNB and fungi were significantly different by the characteristics of weather (rain, after rain, sunny) sampling date (July, August, September and October), the location of sampling site (ground level and basement) and the location of toilet (inside class, nearby class and away class). Multiple regression tests concluded that sampling date, the scale of city where kindergartens are located, the location of sampling site and ventilation efficiency can significantly affect the airborne concentration of bacteria, GNB and fungi. Most of these factors could be related moisture. Environmental factors that can cause the increment of moisture should be controlled in order to reduce airborne concentration of bacteria, GNB and fungi. Legal actions concerning prohibition on the presence of toilet inside class and ventilation criteria should be taken.

도시 일부지역에서의 실내 라돈농도에 관한 연구 (A Study on Indoor Radon Concentrations in Urban Area)

  • 김순애;백남원
    • 한국환경보건학회지
    • /
    • 제28권2호
    • /
    • pp.89-98
    • /
    • 2002
  • This study was taken in general hospital, hotel, shopping center, underground cafe, school, house, for the purpose of investigating the distribution of indoor radon concentration in urban area, by E-PERM which approved U.S. EPA, between August and November 1999. There are two sampling Places were exceed 148 ㏃/㎥(4 pCi/L; U.S EPA remedial level), difference mean is 24.0㏃/㎥ when compared with underground vs. aboveground indoor radon concentration in the same building and ratio is 1.6, so underground area is higher than aboveground (p<0.05). Influencing factors were examined. They related to the location of sampler(detector) open or near the door is lower radon concentration than inside portion, which explains probably open area has better ventilated air and dilutes indoor radon concentration. Temperature has a negative relationship (p<0.05) with indoor radon concentration and relative humidity has a positive (p<0.05) Simultaneously to investigate water radon concentration, collected piped-water and the results were very low, which is the same in piped-water concentration other countries. In conclusion, underground indoor radon concentration is higher than aboveground. Concentration was related to sampling spot, open portion is lower than inside. Higher the temperature, lower the indoor radon concentrations. On the other hand higher the relative humidity, higher the indoor radon concentrations. Indoor radon concentration is influenced by sampling point, temperature, relative humidity.

사출성형 해석을 이용한 게이트 위치 최적화 (Optimization of Gate Location Using Computer-Aided Injection Molding Analysis)

  • 문종신
    • 한국산학기술학회논문지
    • /
    • 제15권10호
    • /
    • pp.5968-5973
    • /
    • 2014
  • 게이트 위치는 제품 품질 및 생산성 등에 큰 영향을 미치기 때문에 사출성형에 있어서 게이트 위치를 결정하는 것은 대단히 중요하며 이를 위하여 사출성형 CAE가 적용되고 있다. 사출성형 해석의 증가와 3차원 유한요소의 사용은 더 많은 계산 시간을 필요로 하게 되면서, 컴퓨터 자원을 적게 사용하면서도 빠른 시간 내에 게이트 위치 최적화를 수행하는 것은 중요한 이슈가 되었다. 본 논문에서는 유동 균형과 웰드라인을 고려하기 위하여 유동 거리에 기반한 최적화 기법을 제시하였다. 그리고 원판 형상의 모델에 적용하여 웰드라인이 응력집중이 예상되는 슬릿홀을 피하면서도 유동 균형을 유지하는 결과를 도출하였다.

원공 위치와 형상 변화에 따른 전동차 크로스 빔의 강도해석 (The Stress Analysis of the Cross Beam of the Electric Car-body according to the Change of Location and Shape of Circular Hole)

  • 전형용;성낙원;한근조
    • 한국정밀공학회지
    • /
    • 제16권9호
    • /
    • pp.9-17
    • /
    • 1999
  • This investigation is the result of the structural analysis by finite element method for optimal design of the cross beam with circular holes of the electric car-body. in order to install the air pipe and electric wire pipe that correspond signal between electric machines for the control system and to reduce the weight of the electric car-body, several circular areas from a cross beam should be taken off. What we want to perform is the optimal design of a cross beam with circular holes to posses equal stress in comparison with no hole cross beam. first, no hole cross beam as basic modal be chosen, executing the analysis, reviewing the distribution of stress and displacement at each location. several parameter should be adopted from the cross beam geometry like the location and shape of the hole to affect the maximum stress and displacement. So the analysis was executed by finite element analysis for finding optimal design parameter to the change of the location and shape of the circular hole. finally, the optimal design of the cross beam with circular holes was obtained and the maximum equivalent stress was compared with no hole cross beam at each location.

  • PDF

바이오로거 부착 위치가 점농어(Lateolabrax maculatus)의 혈액 성상 및 바이오로거 부착효율에 미치는 영향 (Effect of Bio-logger Attachment Location on Blood Characteristics and Bio-logger Attachment Efficiency in Spotted Sea Bass Lateolabrax maculatus)

  • 오승용
    • 한국수산과학회지
    • /
    • 제56권5호
    • /
    • pp.651-659
    • /
    • 2023
  • The effect of bio-logger tagging location on blood characteristics and bio-logger attachment efficiency in spotted sea bass (mean body weight 2356.7 g) was investigated. The fish were tagged at four different tagging locations: no-tag (control), operculum attachment (OA), dorsal muscle attachment (DA), and cauda peduncle muscle attachment (CA). The blood properties and bio-logger attachment efficiencies were examined on days 1, 7, 14, and 35 after tagging the bio-logger at each tagging location. During the experimental periods, the concentrations of hematocrit and hemoglobin in whole blood, and GOT (glutamic oxaloacetic transaminase), GPT (glutamic pyruvic transaminase), total protein (TP), glucose, total cholesterol, cortisol, and superoxide dismutase in plasma were not affected by the attachment location of the bio-logger, however, the TP concentration was significantly lower in OA than in the control group on day 7. After tagging for 35 days, the efficiencies of bio-logger attachment in the OA, DA, and CA after tagging for 35 days were 33.3%, 100.0%, and 33.3%, respectively. These results indicate that, in our experimental condition, the most appropriate bio-logger attachment location is DA, providing basic information on bio-logger utilization methods for ecological and biological biotelemetry surveys of the spotted sea bass.

다수기 원자력발전소 사고 시 소외 방사성물질 농도 계산 방법 (A Method to Calculate Off-site Radionuclide Concentration for Multi-unit Nuclear Power Plant Accident)

  • 이혜린;이기만;정우식
    • 한국안전학회지
    • /
    • 제33권6호
    • /
    • pp.144-156
    • /
    • 2018
  • Level 3 Probabilistic Safety Assessment (PSA) is performed for the risk assessment that calculates radioactive material dispersion to the environment. This risk assessment is performed with a tool of MELCOR Accident Consequence Code System (MACCS2 or WinMACCS). For the off-site consequence analysis of multi-unit nuclear power plant (NPP) accident, the single location (Center Of Mass, COM) method has been usually adopted with the assumption that all the NPPs in the nuclear site are located at the same COM point. It was well known that this COM calculation can lead to underestimated or overestimated radionuclide concentration. In order to overcome this underestimation or overestimation of radionuclide concentrations in the COM method, Multiple Location (ML) method was developed in this study. The radionuclide concentrations for the individual NPPs are separately calculated, and they are summed at every location in the nuclear site by the post-processing of radionuclide concentrations that is based on two-dimensional Gaussian Plume equations. In order to demonstrate the efficiency of the ML method, radionuclide concentrations were calculated for the six-unit NPP site, radionuclide concentrations of the ML method were compared with those by COM method. This comparison was performed for conditions of constant weather, yearly weather in Korea, and four seasons, and the results were discussed. This new ML method (1) improves accuracy of radionuclide concentrations when multi-unit NPP accident occurs, (2) calculates realistic atmospheric dispersion of radionuclides under various weather conditions, and finally (3) supports off-site emergency plan optimization. It is recommended that this new method be applied to the risk assessment of multi-unit NPP accident. This new method drastically improves the accuracy of radionuclide concentrations at the locations adjacent to or very close to NPPs. This ML method has a great strength over the COM method when people live near nuclear site, since it provides accurate radionuclide concentrations or radiation doses.

흡수용액의 In-line 농도측정을 위한 기초연구 (A Preliminary Study on the In-line Concentration Measurement of Absorbent Solution)

  • 민병혁;황덕용;정시영;구기갑
    • 설비공학논문집
    • /
    • 제15권2호
    • /
    • pp.152-158
    • /
    • 2003
  • Titration method is one of the widely used methods for the concentration measurement of absorbent ammonia/water. However, this method is inconvenient because the solution should be extracted for the measurement. Moreover, significant error can be introduced by the evaporation of ammonia during the sampling and measuring procedure. In this study a reliable in-line concentration measurement method was proposed. To prove the validity of the concept, a measuring apparatus was designed, built, and tested with water. It is found that the location of flow inlet and exit is important in the measurement accuracy. The flow inlet and exit located in the middle of the test cell showed the best result. By the error analysis, it is expected that the ammonia concentration can be measured within the error of $\pm$0.18% assuming the error of 0.1 K in temperature measurement and 0.1 g in weight measurement.