• Title/Summary/Keyword: Location Error

Search Result 1,239, Processing Time 0.024 seconds

Location Estimation for Multiple Targets Using Expanded DFS Algorithm (확장된 깊이-우선 탐색 알고리듬을 적용한 다중표적 위치 좌표 추정 기법)

  • Park, So Ryoung;Noh, Sanguk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38C no.12
    • /
    • pp.1207-1215
    • /
    • 2013
  • This paper proposes the location estimation techniques of distributed targets with the multi-sensor data perceived through IR sensors of the military robots in consideration of obstacles. In order to match up targets with measured azimuths, to add to the depth-first search (DFS) algorithms in free-obstacle environment, we suggest the expanded DFS (EDS) algorithm including bypass path search, partial path search, middle level ending, and the supplementation of decision metric. After matching up targets with azimuths, we estimate the coordinate of each target by obtaining the intersection point of the azimuths with the least square error (LSE) algorithm. The experimental results show the error rate of estimated location, mean number of calculating nodes, and mean distance between real coordinates and estimated coordinates of the proposed algorithms.

Characteristics of Uni-directional Diverter for Gravimetric Calibration Facility (액체용 중량식 유량계 교정장치의 일방향 Diverter 특성연구)

  • Nam, Ki Han;Park, Jong Ho;Kim, Hong Jip
    • The KSFM Journal of Fluid Machinery
    • /
    • v.20 no.1
    • /
    • pp.59-64
    • /
    • 2017
  • Diverter is an essential element in gravimetric calibration method of flowmeter. Error of diverter are influenced by flow velocity profile of nozzle outlet, motion velocity of diverter and detecting location. That's why, time detection position of diverter is tuned through repetitive test for minimizing error of diverter. Further the diverter must be compared with the other institutions test since the influence on the accuracy of the flow meter used in the test. In this paper, errors (flow velocity profile of nozzle outlet, motion velocity of diverter and detecting location) of diverter are decreased by produced uni-direction diverter and error of gravimetric calibration system is decreased. Uni-direction diverter is calibrated by gravimetric calibration system with precision flowmeter, the flowmeter is calibrated by pipe prover and other institutions and uni-direction diverter is evaluated. Uni-direction diverter is not influenced by flow velocity profile of nozzle outlet, motion velocity of diverter and detecting location. As a result, Uni-direction diverter can calibrate in wider scope since increasing ratio of maximum and minimum flow rate of uni-direction diverter.

Measurement errors of the EIT systems using a phantom and conductive yarns (전기임피던스 단층촬영법을 이용한 외란위치 계측오차)

  • Park, Ji Su;Koo, Sang-Mo;Kim, Choong Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.8
    • /
    • pp.1430-1435
    • /
    • 2016
  • Electrical impedance tomography (EIT) has been applied to measure the location of external disturbance using a phantom and conductive yarns. According to the test results, the addition of carbon nanotube particles into the phantom does not show remarkable improvement in location errors. On the other hand combined fabric, conductive yarns with fabric, and non-woven fabric, were added to evaluate its performance as a fabric sensor. The combined fabric resulted in a decrease of 21.5% in the circumferential location error and a decrease of 50% in the radial location error, compared to those of the yarns. Additionally, it was revealed that the measurement error is almost linearly proportional to the conductivity of the phantom liquid and resistance of the conductive yarns. The combined fabric can be a promising material for fabric sensors in sports utilities and medical devices.

Effect of Location Error on the Estimation of Aboveground Biomass Carbon Stock (지상부 바이오매스 탄소저장량의 추정에 위치 오차가 미치는 영향)

  • Kim, Sang-Pil;Heo, Joon;Jung, Jae-Hoon;Yoo, Su-Hong;Kim, Kyoung-Min
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.2
    • /
    • pp.133-139
    • /
    • 2011
  • Estimation of biomass carbon stock is an important research for estimation of public benefit of forest. Previous studies about biomass carbon stock estimation have limitations, which come from the used deterministic models. The most serious problem of deterministic models is that deterministic models do not provide any explanation about the relevant effects of errors. In this study, the effects of location errors were analyzed in order to estimation of biomass carbon stock of Danyang area using Monte Carlo simulation method. More specifically, the k-Nearest Neighbor(kNN) algorithm was used for basic estimation. In this procedure, random and systematic errors were added on the location of Sample plot, and effects on estimation error were analyzed by checking the changes of RMSE. As a result of random error simulation, mean RMSE of estimation was increased from 24.8 tonC/ha to 26 tonC/ha when 0.5~1 pixel location errors were added. However, mean RMSE was converged after the location errors were added 0.8 pixel, because of characteristic of study site. In case of the systematic error simulation, any significant trends of RMSE were not detected in the test data.

A Comparison of the Multipath Error Property In Wireless Location of CDMA and OFDM (CDMA 및 OFDM 기반 무선측위의 다중경로오차 특성 비교분석)

  • Bang Hye-Jung;Lee Jang-Gyu;Jee Gyu-In;Kim Jin-Won;Jung Hee;Hyun Moon-Pil
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.10
    • /
    • pp.989-995
    • /
    • 2006
  • This paper shows that the OFDM(Orthogonal Frequency Division Multiplex) system is robust to multipath than CDMA (Code Division Multiple Access) system and it has a strong possibility to be utilized as a supplementing wireless location system for the forthcoming portable internet network. The OFDM system based on IEEE 802.16e is a wireless TDD (Time Division Duplex) OFDMA (Orthogonal Frequency Division Multiple Access) system providing portable internet services in 2.3 GHz frequency band and is scheduled in service in Korea starting in 2006. In this paper, multipath error is calculated using a two-ray model and compared with that of a CDMA system which is following IS-95. The OFDM system shows a maximum multipath error of 3 m while a CDMA system shows a maximum multipath error of 61 m. For this simulation, an early-late technique is used. This technique is usually used to match synchronization of signal in DLL(Delay Lock Loop).

The performance improvement of new correlator architecture in vehicles navigation system (차량요 항법시스템 기반의 새로운 correlator 구조에 따른 성능 향상에 관한 연구)

  • Park, Chi-Ho;Oh, Young-Hwan
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.12
    • /
    • pp.44-53
    • /
    • 2007
  • In this paper, we focus on the developments of complex location awareness algorithms for real-time location based service and precise/stable localization in the outdoor. In the case of using galileo satellite system along with GPS, several error factor such as the ionosphere can be reduced for an increment of used frequency and visible satellites. Therefore, localization estimation error is no longer having problems with location awareness. But, chips synchronization error induces the error of acquisition and tracking, and the performance of receiver can be decreased. In order to solve this problem, this paper proposes a correlator for performance improvement of receiver in the precise localization.

Salvage System Using Location Based Services

  • Kwon, Seong-Geun;Kim, Haesoo
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.12
    • /
    • pp.1427-1431
    • /
    • 2015
  • In the salvage area, the location of the incident vessel and diver to rescue the victim are very important. But there are no ways but to rely on the GPS satellites to obtain the location in the salvage sites. Because the positioning using GPS satellites has a measurement error of up to 50 meters caused by the status of the atmosphere, a new positioning method with more accuracy should be devised. So if studies on measuring the position of the ships and divers accurately in the sea are performed, it will be helpful in the field of the salvage positioning. In this paper, a high precision positioning system in salvage using DGPS signal through mobile broadcasting is proposed with positioning error of up to 1 meter.

A Study on the Construction of System for Correct Location Determination of Fixed Tag (고정 태그 위치의 정확한 확인을 위한 시스템 구축에 관한 연구)

  • Lee, Doo-Yong;Jang, Jung-Hwan;Zhang, Jing-Lun;Jho, Yong-Chul;Lee, Chang-Ho
    • Journal of the Korea Safety Management & Science
    • /
    • v.14 no.1
    • /
    • pp.209-215
    • /
    • 2012
  • This paper deals with the construction of system for correct location determination of fixed tag. We adapted to construct the above method. Also we adapted the several filtering method. This system was constructed through using of several filtering methods to decrease the location determination error and fingerprint method which is composed of training phase and positioning phase. We constructed this system using Labview 2010 and MS-SQL 2000 as database. This system results in less location determination error than least square method, triangulation positioning method, and other fingerprint methods.

Indoor Positioning Technology Integrating Pedestrian Dead Reckoning and WiFi Fingerprinting Based on EKF with Adaptive Error Covariance

  • Eui Yeon Cho;Jae Uk Kwon;Myeong Seok Chae;Seong Yun Cho;JaeJun Yoo;SeongHun Seo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.3
    • /
    • pp.271-280
    • /
    • 2023
  • Pedestrian Dead Reckoning (PDR) methods using initial sensors are being studied to provide the location information of smart device users in indoor environments where satellite signals are not available. PDR can continuously estimate the location of a pedestrian regardless of the walking environment, but has the disadvantage of accumulating errors over time. Unlike this, WiFi signal-based wireless positioning technology does not accumulate errors over time, but can provide positioning information only where infrastructure is installed. It also shows different positioning performance depending on the environment. In this paper, an integrated positioning technology integrating two positioning techniques with different error characteristics is proposed. A technique for correcting the error of PDR was designed by using the location information obtained through WiFi Measurement-based fingerprinting as the measurement of Extended Kalman Filte (EKF). Here, a technique is used to variably calculate the error covariance of the filter measurements using the WiFi Fingerprinting DB and apply it to the filter. The performance of the proposed positioning technology is verified through an experiment. The error characteristics of the PDR and WiFi Fingerprinting techniques are analyzed through the experimental results. In addition, it is confirmed that the PDR error is effectively compensated by adaptively utilizing the WiFi signal to the environment through the EKF to which the adaptive error covariance proposed in this paper is applied.