• Title/Summary/Keyword: Location Error

Search Result 1,239, Processing Time 0.036 seconds

The Detection of Heat Emission to Solar Cell using UAV-based Thermal Infrared Sensor (UAV 기반 열적외선 센서를 이용한 태양광 셀의 발열 검출)

  • Lee, Geun Sang;Lee, Jong Jo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.25 no.1
    • /
    • pp.71-78
    • /
    • 2017
  • Many studies have been implemented to manage solar plant being supplied widely in recent years. This study analyzed heat emission of solar cell using unmanned aerial vehicle(UAV)-based thermal infrared sensor, and major conclusions are as belows. Firstly, orthomosaic image and digital surface model(DSM) data were acquired using UAV-based RGB sensor, and solar light module layer necessary to analyze the heat emission of solar cell was constructed by these data. Also as a result of horizontal error into validation points using virtual reference service(VRS) survey for evaluating the location accuracy of solar light module layer, higher location accuracy could be acquired like standard error of $dx={\pm}2.4cm$ and $dy={\pm}3.2cm$. And this study installed rubber patch to test the heat emission of solar cell and could analyzed efficiently the location of rubber patch being emitted heat using UAV-based thermal infrared sensor. Also standard error showd as ${\pm}3.5%$ in analysis between calculated cell ratio by rubber patch and analyzed cell ratio by UAV-based thermal infrared sensor. Therefore, it could be efficiently analyzed to heat emission of solar cell using UAV-based thermal infrared sensor. Also efficient maintenance of solar plant could be possible through extracting the code of solar light module being emitted of heat automatically.

Prediction of Tropical Cyclone Intensity and Track Over the Western North Pacific using the Artificial Neural Network Method (인공신경망 기법을 이용한 태풍 강도 및 진로 예측)

  • Choi, Ki-Seon;Kang, Ki-Ryong;Kim, Do-Woo;Kim, Tae-Ryong
    • Journal of the Korean earth science society
    • /
    • v.30 no.3
    • /
    • pp.294-304
    • /
    • 2009
  • A statistical prediction model for the typhoon intensity and track in the Northwestern Pacific area was developed based on the artificial neural network scheme. Specifically, this model is focused on the 5-day prediction after tropical cyclone genesis, and used the CLIPPER parameters (genesis location, intensity, and date), dynamic parameters (vertical wind shear between 200 and 850hPa, upper-level divergence, and lower-level relative vorticity), and thermal parameters (upper-level equivalent potential temperature, ENSO, 200-hPa air temperature, mid-level relative humidity). Based on the characteristics of predictors, a total of seven artificial neural network models were developed. The best one was the case that combined the CLIPPER parameters and thermal parameters. This case showed higher predictability during the summer season than the winter season, and the forecast error also depended on the location: The intensity error rate increases when the genesis location moves to Southeastern area and the track error increases when it moves to Northwestern area. Comparing the predictability with the multiple linear regression model, the artificial neural network model showed better performance.

A Study on the Design and Implementation of a Position Tracking System using Acceleration-Gyro Sensor Fusion

  • Jin-Gu, Kang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.1
    • /
    • pp.49-54
    • /
    • 2023
  • The Global Positioning System (GPS) was developed for military purposes and developed as it is today by opening civilian signals (GPS L1 frequency C/A signals). The current satellite orbits the earth about twice a day to measure the position, and receives more than 3 satellite signals (initially, 4 to calculate even the time error). The three-dimensional position of the ground receiver is determined using the data from the radio wave departure time to the radio wave Time of Arrival(TOA) of the received satellite signal through trilateration. In the case of navigation using GPS in recent years, a location error of 5 to 10 m usually occurs, and quite a lot of areas, such as apartments, indoors, tunnels, factory areas, and mountainous areas, exist as blind spots or neutralized areas outside the error range of GPS. Therefore, in order to acquire one's own location information in an area where GPS satellite signal reception is impossible, another method should be proposed. In this study, IMU(Inertial Measurement Unit) combined with an acceleration and gyro sensor and a geomagnetic sensor were used to design a system to enable location recognition even in terrain where GPS signal reception is impossible. A method to track the current position by calculating the instantaneous velocity value using a 9-DOF IMU and a geomagnetic sensor was studied, and its feasibility was verified through production and experimentation.

Method of Earthquake Acceleration Estimation for Predicting Damage to Arbitrary Location Structures based on Artificial Intelligence (임의 위치 구조물의 손상예측을 위한 인공지능 기반 지진가속도 추정방법 )

  • Kyeong-Seok Lee;Young-Deuk Seo;Eun-Rim Baek
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.3
    • /
    • pp.71-79
    • /
    • 2023
  • It is not efficient to install a maintenance system that measures seismic acceleration and displacement on all bridges and buildings to evaluate the safety of structures after an earthquake occurs. In order to maintain this, an on-site investigation is conducted. Therefore, it takes a lot of time when the scope of the investigation is wide. As a result, secondary damage may occur, so it is necessary to predict the safety of individual structures quickly. The method of estimating earthquake damage of a structure includes a finite element analysis method using approved seismic information and a structural analysis model. Therefore, it is necessary to predict the seismic information generated at arbitrary location in order to quickly determine structure damage. In this study, methods to predict the ground response spectrum and acceleration time history at arbitrary location using linear estimation methods, and artificial neural network learning methods based on seismic observation data were proposed and their applicability was evaluated. In the case of the linear estimation method, the error was small when the locations of nearby observatories were gathered, but the error increased significantly when it was spread. In the case of the artificial neural network learning method, it could be estimated with a lower level of error under the same conditions.

An Error Detection and Repair on DNA Duplicate Structure (DNA 이중나선구조에서의 오류 검출 및 복구)

  • Kim, Soke-Hwan;Hur, Chang-Wu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.11
    • /
    • pp.2500-2504
    • /
    • 2011
  • Living organisms are composed of cells that can replicate themselves through growth, division packed with tons capacity. On DNA mutations, ie mutations in the offspring's survival and reproduction can be held against you, and packed with tons ambivalence that could benefit. In this study, the DNA double helix is used as a template for replication, we first separated into single strands of the double helix must be opened Combining the double helix portion of the location of errors in the bond provides a way to find and repair.

The methods of error detection at Digital circuit using the FPGA 2-dimensional array (FPGA 2 차원 배열을 사용한 디지털 회로에서 오류 검출의 방법)

  • Kim, Soke-Hwan;Hur, Chang-Wu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.202-206
    • /
    • 2012
  • In this paper, we proposed on the direction of self-repairing mimicking the cell on the digital system design. Three-dimensional array of cells rather than using the original structure of FPGA, an array of blocks for efficient error detection methods were investigated. With a certain regularity, so the design method in detail by dividing the full array. The digital circuits can be detected fault location easily and quickly.

  • PDF

A Model-based 3-D Pose Estimation Method from Line Correspondences of Polyhedral Objects

  • Kang, Dong-Joong;Ha, Jong-Eun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.762-766
    • /
    • 2003
  • In this paper, we present a new approach to solve the problem of estimating the camera 3-D location and orientation from a matched set of 3-D model and 2-D image features. An iterative least-square method is used to solve both rotation and translation simultaneously. Because conventional methods that solved for rotation first and then translation do not provide good solutions, we derive an error equation using roll-pitch-yaw angle to present the rotation matrix. To minimize the error equation, Levenberg-Marquardt algorithm is introduced with uniform sampling strategy of rotation space to avoid stuck in local minimum. Experimental results using real images are presented.

  • PDF

The methods of error detection at Digital circuit using the FPGA 2-dimensional array (FPGA 2차원 배열을 사용한 디지털 회로에서 오류 검출의 방법)

  • Kim, Soke-Hwan;Hur, Chang-Wu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.6
    • /
    • pp.1306-1311
    • /
    • 2012
  • In this paper, we proposed on the direction of self-repairing mimicking the cell on the digital system design. Three-dimensional array of cells rather than using the original structure of FPGA, an array of blocks for efficient error detection methods were investigated. With a certain regularity, so the design method in detail by dividing the full array. The digital circuits can be detected fault location easily and quickly.

A Phase-to-Phase Distance Relaying Algorithm Using Direct 3 Phase Calculation (직접계산을 이용한 상간단락 거리계전 알고리즘)

  • Hyun, Seung-Ho;Lee, Sung-O
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.333_335
    • /
    • 2009
  • It is expected, in the near future, that the use of distributed generation systems should be increased considerably. In this case, distance relay algorithm should be developed in the manner that it can reduce the error due to the in-feed effect. This paper presents a method to consider the fault current rushed from the remote end of a line. In the steady-state, the relays in both ends exchange the voltages of upper nodes. If a fault is perceived, the relay calculates fault location taking the fault current from the remote end by using voltage data of the remote ends obtained just before the fault. Even though this method has inevitable error, it can show more precise fault allocation. The suggested method is applied to a typical transmission system with two power sources in both ends to verify its effectiveness.

  • PDF

Reliability Estimation for the Exponential Distribution under Multiply Type-II Censoring

  • Kang, Suk-Bok;Lee, Sang-Ki;Choi, Hui-Taeg
    • 한국데이터정보과학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.13-26
    • /
    • 2005
  • In this paper, we derive the approximate maximum likelihood estimators of the scale parameter and location parameter of the exponential distribution based on multiply Type-II censored samples. We compare the proposed estimators in the sense of the mean squared error for various censored samples. We also obtain the approximate maximum likelihood estimator (AMLE) of the reliability function by using the proposed estimators. And then we compare the proposed estimators in the sense of the mean squared error.

  • PDF