본 논문은 compressive sampling (CS)을 활용한 Ulta-WideBand 채널 측정 및 모델링 기법을 제안한다. 기존에 실내 위치측위 기술 중 제안 UWB채널 측정 기법은 UWB 신호의 주파수 도메인에서의 sparsity 특성을 활용하여, 적은 복잡도로 합리적인 성능을 낼 수 있다. 게다가, 본 논문에서는 노이즈 환경에서 성능을 향상 시키기 위해 CS 기법에서 신호 복원기법을 위한 최적화기법으로 soft thresholding method를 제안한다. UWB시스템에서의 실내 위치추정 기법 성능 분석을 위해 실 측정 데이터를 활용하여, 제안한 채널 측정 및 모델링 기법의 성능을 위치 측정 오차, bandwidth, CS 압축률 등 다양한 조건하에 거리 오차값을 분석한다.
미래의 지능형 공장 환경은 관리자가 M2M (Machine-to-Machine) 통신을 이용하여 원격으로 공장 안의 기기들의 동작 상태와 환경을 인지하고 관리하는 것을 목표로 하고 있다. 하지만, 공장 안에서 사용하는 통신 프로토콜인 WLAN (Wireless Local Area Network), ZigBee, Bluetooth 등은 동일한 ISM (Industrial Scientific Medical) 대역을 사용하기 때문에 상호 간섭이 발생하게 된다. 본 논문에서는 Fingerprinting 무선측위 기술을 이용하여 영역 기반으로 주파수를 할당하는 기법을 제안한다. 그리고 일반적인 기법이 가지고 있는 측위 성능의 문제점을 개선하기 위하여, k-NN (Nearest Neighbor) 알고리즘을 적용하고 또한 이를 기반으로 한 새로운 기법도 제안한다. 모의실험 결과를 통해 제안된 무선측위 알고리즘이 다른 기법들보다 측위 성능의 오차가 감소하였으며, 궁극적인 목표로 하고 있는 채널 간섭율 또한 향상되었기에 주파수의 간섭을 보다 효율적으로 관리할 수 있다는 결론을 얻었다. 아울러 지속적인 위치 추정을 통하여 공장 환경 내 안전도 보장할 수 있음을 확인하였다.
연구목적: 본 논문에서는 상설 네트워크가 없는 장소에 Internet of things (IoT) 기기를 활용하여 이를 부착하는 것만으로도 실내 위치를 추적할 수 있는 측위기법을 제안한다. 연구방법: 본 논문의 제안기법은 단순한 계산을 통해 대상의 위치를 추정할 수 있는 weighted centroid localization을 활용한다. 연구결과: 일반 건물의 상설 네트워크가 없는 지하 주차장에서 제안하는 기법을 활용하여 실험을 진행하였고, 실험한 결과로 $82.5m{\times}56.4m$ 지하 공간에서 약 10m 이내의 위치 정확도를 확인하였다. 결론: 본 논문의 제안기법은 주차장, 창고, 공장 등과 같이 상설 네트워크 인프라가 없는 장소에서도 재난, 응급, 군사 작전 등과 같이 신속한 위치 추적을 필요로 하는 상황에 적용 가능하다.
본 논문은 지게차 AGV(autonomous ground vehicle)의 자율주행을 위한 제어 방법에 관한 연구이다. 기존에 개발된 지게차 AGV의 위치측정 방법으로는 자기-자이로 유도(magnet-gyro guidance) 방식과 유선 유도(wire guidance) 방법이 있지만, 유지보수에 대한 지속적인 노력과 비용문제가 있으며, 작업 환경의 변화에 따라 작업 환경을 재구성해야하는 단점이 있다. 따라서 본 논문에서는 외란에 강인하고 작업 환경 및 작업 내용의 변경에 유연한 시스템을 구축하기 위해 레이저 내비게이션 센서와 엔코더, 자이로 센서의 센서융합을 통한 위치측정 시스템을 개발하였다. 또한 팔레트를 하역 운송해야하는 지게차 AGV의 주행제어를 위해 팔레트와 지게차 AGV 사이의 거리 차와 각도 차를 바탕으로 퍼지 제어 및 비례 제어를 이용한 주행제어기를 설계하였다. 본 연구에서 제안한 지게차 AGV를 위한 제어 시스템의 성능 분석을 위해 물류 운송작업이 가능한 작업공간에서 동일한 하역 작업을 10회 반복 하였다. 그 결과, 시뮬레이션에 의해 생성된 경로와 실제 주행경로의 최대 평균 오차가 87.77mm를 가짐을 확인하였다.
안전한 자율주행을 위해 정확한 자기위치 측위와 주변지도 생성은 무엇보다 중요하다. 고가의 고정밀위성항법시스템(Global Positioning System, GPS), 관성측정장치(Inertial Measurement Unit, IMU), 라이다(Light Detection And Ranging, LiDAR), 레이더(Radio Detection And Ranging, RADAR), 주행거리측정계(Wheel odometry) 등의 많은 센서를 조합하여 워크스테이션급의 PC장비를 사용하여 센서데이터를 처리하면, cm급의 정밀한 자기위치 계산 및 주변지도 생성이 가능하다. 하지만 과도한 데이터 정합비용과 경제성 부족으로 고가의 장비 조합은 자율주행의 대중화에 걸림돌이 되고 있다. 본 논문에서는 기존 단안카메라를 사용하는 Monocular Visual SLAM을 발전시켜 RTK가 지원되는 GPS를 센서 융합하여 정확성과 경제성을 동시에 확보하였다. 또한 HD Map을 활용하여 오차를 보정하고 임베디드 PC장비에 포팅하여 도심 도로상에서 RMSE 33.7 cm의 위치 추정 및 주변지도를 생성할 수 있었다. 본 연구에서 제안한 방법으로 안전하고 저렴한 자율주행 시스템 개발과 정확한 정밀도로지도 생성이 가능할 것으로 기대한다.
주요 도시의 대규모 주차장에서 실내 차량 측위는 필수 구성 요소지만, 다양한 기술적 한계 및 불완전한 무선 채널 환경은 기존 측위 기법의 정확도를 심각하게 저하시킨다. 본 논문은 저비용 비콘을 활용하여 실내 공간 내 이동 차량이 비콘의 RSS (Received Signal Strength) 값만을 사용하여 근접 비콘 및 이동 방향을 감지하는 기법을 제시한다. 제안된 근접 감지 기법은 다방향 DRSS (Differential RSS) 기술을 활용하여 주위 환경, 차량 및 모바일 기기의 영향을 최소화한다. 본 논문에서는 저가의 블루투스 모듈을 사용하여 다방향 비콘 프로토타입을 개발하였으며, 측위 성능은 394.8m×304.3m 대규모 면적의 실제 지하 주차장에 96개의 비콘을 설치하여 관련 성능을 평가하였다. 실험 결과 근접 감지 오차의 90번째 백분위수는 0.8m이며, 제안된 기법은 다양한 차량 및 모바일 기기의 영향을 최소화하여 강건한 근접 감지 성능을 보장한다.
Jiajia, Hao;Xinqun, Zhu;Yang, Yu;Chunwei, Zhang;Jianchun, Li
Smart Structures and Systems
/
제30권6호
/
pp.673-686
/
2022
Deep learning algorithms for Structural Health Monitoring (SHM) have been extracting the interest of researchers and engineers. These algorithms commonly used loss functions and evaluation indices like the mean square error (MSE) which were not originally designed for SHM problems. An updated loss function which was specifically constructed for deep-learning-based structural damage detection problems has been proposed in this study. By tuning the coefficients of the loss function, the weights for damage localization and quantification can be adapted to the real situation and the deep learning network can avoid unnecessary iterations on damage localization and focus on the damage severity identification. To prove efficiency of the proposed method, structural damage detection using convolutional neural networks (CNNs) was conducted on a truss bridge model. Results showed that the validation curve with the updated loss function converged faster than the traditional MSE. Data augmentation was conducted to improve the anti-noise ability of the proposed method. For reducing the training time, the normalized modal strain energy change (NMSEC) was extracted, and the principal component analysis (PCA) was adopted for dimension reduction. The results showed that the training time was reduced by 90% and the damage identification accuracy could also have a slight increase. Furthermore, the effect of different modes and elements on the training dataset was also analyzed. The proposed method could greatly improve the performance for structural damage detection on both the training time and detection accuracy.
This paper proposes a method to calibrate the electrode misplacement in underwater electric field sensor arrays (EFSAs) for accurate measurements of underwater electric field signatures. The electrode misplacement of an EFSA was estimated by measuring the electric field signatures generated by a known electric source and by comparing the measurements with the theoretical calculations under similar measurement conditions. When the EFSA measured the electric field signatures induced by an unknown electric source, the electric properties of the unknown electric source were approximated by considering the optimized estimation of the electrode misplacement of the EFSA. Finally, the measured electric field signatures were calibrated by calculating the theoretical electric field signatures to be measured with an ideally installed EFSA without electrode misplacement; the approximated electric properties of the unknown electric source were also taken into account. Simulations were conducted to test the proposed calibration method. The results showed that the electrode misplacement could be estimated. Further, the electric field measurements and the electric field-based localization of underwater vessels became more accurate after the application of the proposed calibration method. The proposed method will contribute to applications such as the detection and localization of underwater electric sources, which require accurate measurements of underwater electric field signatures.
The purpose of this study was to investigate the possibility of increasing the efficiency of disaster relief rescue operations through collaboration among multiple aerial and ground robots. The robots create 2.5D maps, which are merged into a 2.5D map. The 2.5D map can be handled by a low-specification controller of an aerial robot and is suitable for ground robot navigation. For localization of the aerial robot, a six-degree-of-freedom pose recognition method using VIO was applied. To build a 2.5D map, an image conversion technique was employed. In addition, to merge 2.5D maps, an image similarity calculation technique based on the features on a wall was used. Localization and navigation were performed using a ground robot to evaluate the reliability of the 2.5D map. As a result, it was possible to estimate the location with an average and standard error of less than 0.3 m for the place where the 2.5D map was normally built, and there were only four collisions for the obstacle with the smallest volume. Based on the 2.5D map building and map merging system for the aerial robot used in this study, it is expected that disaster response work efficiency can be improved by combining the advantages of heterogeneous robots.
본 논문에서는 간섭 패턴 정합을 이용한 수중 광대역 음원의 위치 추정법을 제안한다. 두 개의 센서 스펙트로그램에 나타나는 간섭 패턴의 정합을 통해 음원과 두 센서간의 상대적인 거리비를 추정하고 이를 아폴로니오스 원의 방정식에 적용하였다. 아폴로니오스의 원은 두 정점에 이르는 거리비가 일정한 값으로 운동하는 점의 자취로 정의되며, 음원의 위치로 추정 가능한 궤적을 나타낼 수 있다. 그러나 아폴로니오스의 원 하나만으로는 정확한 음원의 위치추정이 어렵다. 그러므로 또 하나의 위치 궤적을 추정 할 수 있는 방정식이 필요하다. 따라서 음원과 두 센서간의 신호도달 시간차이를 이용한 쌍곡선의 방정식을 도입하여 최종적인 음원의 위치는 두 방정식의 교점의 좌표로 추정하였다. 제안된 방법의 성능 평가를 위하여 모의실험을 통해 위치 추정 오차율을 분석하고, 해상실험을 통하여 실제 적용 가능성을 분석하였다. 모의실험 및 해상실험 결과 본 논문에서 제안된 위치 추정 알고리즘이 오차율 10% 이내의 성능을 나타내었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.