• 제목/요약/키워드: Local wind circulation

검색결과 70건 처리시간 0.023초

레이더 자료동화에 따른 기상장모의 민감도에 관한 수치연구 (Numerical Study on the Sensitivity of Meteorological Field Variation due to Radar Data Assimilation)

  • 이순환;박근영;류찬수
    • 한국환경과학회지
    • /
    • 제15권1호
    • /
    • pp.9-19
    • /
    • 2006
  • The purpose of this research is development of radar data assimilation observed at Jindo S-band radar The accurate observational data assimilation system is one of the important factors to meteorological numerical prediction of the region scale. Diagnostic analysis system LAPS(Local Analysis and Prediction System) developed by US FSL(Forecast Systems Laboratory) is adopted assimilation system of the Honam district forecasting system. The LAPS system was adjusted in calculation environment in the Honam district. And the improvement in the predictability by the application of the LAPS system was confirmed by the experiment applied to Honam district local severe rain case of generating 22 July 2003. The results are as follows: 1) Precipitation amounts of Gwangju is strong associated with the strong in lower level from analysis of aerological data. This indicated the circulation field especially, 850hPa layer, acts important role to precipitation in Homan area. 2) Wind in coastal area tends to be stronger than inland area and radar data show the strong wind in conversions zone around front. 3) Radar data assimilation make the precipitation area be extended and maximum amount of precipitation be smaller. 4) In respect to contribution rate of different height wind field on precipitation variation, radar data assimilation of upper level is smaller than that of lower level.

폭설에 대한 예측가능성 연구 - 2008년 3월 4일 서울지역 폭설사례를 중심으로 - (On the Predictability of Heavy Snowfall Event in Seoul, Korea at Mar. 04, 2008)

  • 류찬수;서애숙;박종서;정효상
    • 한국환경과학회지
    • /
    • 제18권11호
    • /
    • pp.1271-1281
    • /
    • 2009
  • The heavy snowfall event over the eastern part of Seoul, Korea on Mar. 04, 2008 has been abruptly occurred after the frontal system with the heavy snowfall event had been past over the Korean peninsula on Mar. 03, 2008. Therefore, this heavy snowfall event couldn't be predicted well by any means of theoretical knowledges and models. After the cold front passed by, the cold air mass was flown over the peninsula immediately and became clear expectedly except the eastern part and southwestern part of peninsula with some large amount of snowfall. Even though the wide and intense massive cold anticyclone was expanded and enhanced by the lowest tropospheric baroclinicity over the Yellow Sea, but the intrusion and eastward movement of cold air to Seoul was too slow than normally predicted. Using the data of numerical model, satellite and radar images, three dimensional analysis Products(KLAPS : Korea Local Analysis and Prediction System) of the environmental conditions of this event such as temperature, equivalent potential temperature, wind, vertical circulation, divergence, moisture flux divergence and relative vorticity could be analyzed precisely. Through the analysis of this event, the formation and westward advection of lower cyclonic circulation with continuously horizontal movement of air into the eastern part of Seoul by the analyses of KLAPS fields have been affected by occurring the heavy snowfall event. As the predictability of abrupt snowfall event was very hard and dependent on not only the synoptic atmospheric circulation but also for mesoscale atmospheric circulation, the forecaster can be predicted well this event which may be occurred and developed within the very short time period using sequential satellite images and KLAPS products.

한반도 주요 대도시지역의 지표오존 특성 : 추세, 일변화, 월변화, 수평분포 (Surface Ozone in The Major Cities of Korea : Trends, Diurnal and Seasonal Variations, and Horizontal Distributions)

  • 오인보;김유근
    • 한국대기환경학회지
    • /
    • 제18권4호
    • /
    • pp.253-264
    • /
    • 2002
  • Surface ozone concentrations measured at 40 monitoring sites in three major cities (Seoul, Busan, and Daegu) of Korea during 1993~2000 were analyzed to understand the characteristics of temporal and spatial distributions. Trends were analyzed for annual mean, 95th percentiles of daily 8-hour maximum and days exceeding 8-h ozone standard of 60 ppb. Three indicators exhibited increasing trends (+0.75 ppb yr$^{-1}$ , +2.20 ppb yr$_{-1}$ , and +5.35 days yr$_{-1}$ on average) throughout the study period at all cities. Diurnal and seasonal variations were the largest in Seoul followed by Daegue and Busan, due to the high photochemical production and titration of ozone (Seoul), strong wind and constant supply of background ozone from the ocean (Busan). In the urban centers and industrial areas at all cities, scavenging of ozone by NO reduces the daily 8-hour maximum ozone by 10 ppb on average. High concentrations of ozone have frequently occurred in downwind eastern (Seoul and Daegu) or northern (Busan) sides of the territory. In particular, the coastal area of Busan had relatively high ozone level due to the local sea land breeze circulation. The results indicated that the temporal and spatial variations of ozone concentration were non -uniform and were closely related to the local environments; emission levels, climates, and geographic locations.

해석학적모델을 이용한 하계 대구지방의 열적저기압 형성에 관한 연구 (On the Thermal Low-pressure Onset using Analytical Model around Daegu in Summer)

  • 김해동;정우식
    • 한국환경과학회지
    • /
    • 제11권10호
    • /
    • pp.1133-1140
    • /
    • 2002
  • The growth and extent of the local pressure field at any point is of primary importance as it supplies the driving force for the local wind circulation which causes a medium-range transport of air pollutants. The local pressure field is produced by the variation of temperature in the lower layers of the atmosphere, and is called the thermal wave. The thermal wave is influenced by the difference in the diurnal variations between two regions with different surface condition, for example land and sea. This difference produces the land- and sea-breeze phenomenon, and brings corresponding variations in the form of the thermal wave. Daytime temperature over the inland area (Daegu) was higher than that of the coastal area (Busan). The temperature difference reached about 5~6$^{\circ}C$ in the late afternoon(30-31 May 1999). The low pressure system of Daegu was most fully developed at the time. In this study, we investigated the possibility of thermal low onset around Daegu in summer with an analytical model. The topography effect was neglected in the model. We could predict a thermal low-pressure of about 3.4hPa at Daegu with wide flat land surface, when the inland area is about 6K warmer than the coastal area temperature. The pressure decrease is somewhat less than the observed value(4~5 hPa).

한반도 대기정체의 특성 및 지역기후모델 HadGEM3-RA를 이용한 미래 전망 (Characteristics of Air Stagnation over the Korean Peninsula and Projection Using Regional Climate Model of HadGEM3-RA)

  • 김도현;김진욱;김태준;변재영;김진원;권상훈;김연희
    • 대기
    • /
    • 제30권4호
    • /
    • pp.377-390
    • /
    • 2020
  • Not only emissions, but also atmospheric circulation is a key factor that affects local particulate matters (PM) concentrations in Korea through ventilation effects and transboundary transports. As part of the atmospheric circulation, air stagnation especially adversely affects local air quality due to weak ventilation. This study investigates the large-scale circulation related to air stagnation over Korea during winter and projects the climate change impacts on atmospheric patterns, using observed PM data, reanalysis and regional climate projections from HadGEM3-RA with Modified Korea Particulate matter Index. Results show that the stagnation affects the PM concentration, accompanied by pressure ridge at upper troposphere and weaken zonal pressure gradient at lower troposphere. Downscaling using HadGEM3-RA is found to yield Added-Value in the simulated low tropospheric winds. For projection of future stagnation, SSP5-8.5 and SSP1-2.6 (high and low emission) scenarios are used here. It has been found that the stagnation condition occurs more frequently by 11% under SSP5-8.5 and by 5% under SSP1-2.6 than in present-day climate and is most affected by changes in surface wind speed. The increase in the stagnation conditions is related to anticyclonic circulation anomaly at upper troposphere and weaken meridional pressure gradient at lower troposphere. Considering that the present East Asian winter monsoon is mainly affected by change in zonal pressure gradient, it is worth paying attention to this change in the meridional gradient. Our results suggest that future warming condition increase the frequency of air stagnation over Korea during winter with response of atmospheric circulation and its nonlinearity.

광양만 권역에서의 고농도 오존 사례에 대한 기상 및 대기질 분석 (The Analysis of Atmospheric Flow Field and Air Quality According to the High Level Ozone Case on Gwangyang Bay)

  • 최현정;이화운;임헌호;송재활
    • 한국환경과학회지
    • /
    • 제17권7호
    • /
    • pp.743-753
    • /
    • 2008
  • Gwangyang Bay is often severely confronted by photochemical pollutants due to its location and dense emissions. It is located in a basin on the south coast of the Korean peninsula and is crossed by a remarkable cluster of hills and mountains of a small horizontal scale that forms a channel. Clearly, the air flow field has a great influence on the dispersion of air pollutants. The characteristics of the wind flow patterns have an important effect on the dispersion of pollutants emitted. In these situations, the distribution of the ozone concentration is extremely complicated because of the superposition of circulations of the air flow fields, especially in complex coastal region. In this study, we examined the distribution of the high level ozone on Gwangyang Bay particularly during the episode day (for 5 years). Among these days, A high level ozone was induced by the development of a sea/land breeze local circulation system, as well as by an anabatic/catabatic flow from the mountains and valley with weakening of the synoptic wind. High level ozone distribution pattern(6 types) on Gwangyang bay is analyzed and the comparison of each pattern reveals substantial localized differences in intensity and distribution of ozone concentration from the site coherence and UPA analysis of ozone concentration. The observed VOC concentration had much difference in concentrations and daily variations between Jungdong and Samil.

해풍시작에 영향을 미치는 지형성 강풍현상에 대한 수치실험 (Numerical Experiments on the Terrain Following Strong Wind Phenomenon Effecting to the Onset of Sea Breeze)

  • 이화운;정우식
    • 한국지구과학회지
    • /
    • 제24권4호
    • /
    • pp.325-336
    • /
    • 2003
  • 관측지점의 위치를 살펴보면 해안으로부터 수영은 약 5m정도이고 해운대는 약 1km정도 떨어져 있다. 하지만 해운대에서의 해풍시작시간이 수영보다 빨리 나타난다. 따라서 국지순환모형인 LCM을 이용하여 수영과 해운대에서 해풍시작시간에 대한 지형의 효과를 수치모의 하였다. 이러한 현상은 야간의 복사냉각에 의해 형성된 흐름에 의한 것으로 분석되었는데, 도심지를 둘러싸고 있는 고지대의 경사면을 따라서 수렴된 공기가 가장 저지대인 수영지역으로 흘러가기 때문에 나타난 것으로 이러한 현상은 일출 후에도 나타난다. AWS자료를 분석한 결과, 수영에서 해운대에 비해 약 3배정도 강한 강풍현상이 나타났는데, 이는 수영지역이 야간공기의 유출구이기 때문이다. 이를 통해 지형조건이 해풍의 시작에 중요한 역할을 한다는 것을 알 수 있었다.

대기오염물질의 장거리 수송과 열적저기압의 관계 (Relationship between Thermal Low and Long-Range Transport of Air Pollutants)

  • 이화운;김유근;김해동;정우식;현명숙
    • 한국환경과학회지
    • /
    • 제10권2호
    • /
    • pp.143-151
    • /
    • 2001
  • The atmospheric conditions and the transport mechanism of long-range transport of air pollutants from coastal area to inland area were investigated using regular meteorological data and air pollution data obtatined from the southeastern area of Korea. Daytime temperature over the inland area(Taegu) was higher than that over the coastal area(Pusan) and the temperature difference of about 5~6$^{\circ}C$ when the thermal low most fully developed and the sea level pressure over Taegu was lower than that over Pusan by about 4~5hPa at that time. Therefore this low pressure appeared to the thermally induced low. Air mass polluted from the coastal area during the morning period was transported inland area, at first by the sea breeze and by the large scale wind system toward the thermal low generated in the mountainous inland region. This was explained by the fact that the concentration of air pollutants over Taegu increased throughtout the late afternoon.

  • PDF

해수순환모델(FVCOM)을 이용한 하구의 조위 변화에 미치는 국부적 바람의 영향 (Local Winds Effects on the Water Surface Variation at the Shallow Estuary, Mobile Bay)

  • 이정우;윤상린;오혜철;김석구;이준
    • 대한환경공학회지
    • /
    • 제36권8호
    • /
    • pp.570-578
    • /
    • 2014
  • 수심이 낮은 하구에서 바람이 국부적인 해수면 상승/하강에 미치는 영향을 연구하기 위해 Mobile Bay에 3차원 해수 순환모델을 적용하였다. Mobile Bay의 남단 경계면, 즉 northern Gulf of Mexico에서 시작된 조위는 Mobile River system 북부까지 직접적인 영향을 준다. 그러나 Mobile Bay 남단에서 발생한 조위변화는 Mobile Bay 북부로 이동하면서 Mobile River system으로부터 들어오는 담수와 국부적 바람의 영향으로 왜곡된다. Mobile Bay 남단에 위치한 기상관측소에서의 바람정보를 Mobile Bay 전체에 적용하였을 경우 Mobile Bay 북부에서 실제보다 강한 바람의 영향으로 과대한 수위 상승과 하강 현상이 발생하였다. 그러나 Mobile Bay 남단과 중단에 위치한 두 개의 관측소에서 측정된 바람 정보를 활용하였을 경우 Mobile Bay 북부에서의 조위 변화를 보다 정확하게 재현하는 것으로 나타났다. 특히 바람의 강도가 센 경우 Mobile Bay 남단과 북단의 풍속이 현저하게 차이나는 것으로 나타났으며(~ 88%), 이는 Mobile Bay 북단에서 나무와 건물 등의 영향으로 바람의 강도가 급격하게 줄어들었기 때문으로 판단된다. 따라서 Mobile Bay와 같이 수심이 낮고 국부적으로 풍속이 다른 하구 또는 만에서의 수위변화 재현 또는 예측을 위해서는 국부적인 바람 정보가 매우 중요한 것으로 연구되었다.

해운대 이안류 발생 시 수영만의 물리환경 - 2009년 8월 (Physical Environments of Suyong Bay during the Rip Current Events at Haeundae - August 2009)

  • 이재철;김대현
    • 한국해양학회지:바다
    • /
    • 제15권3호
    • /
    • pp.110-114
    • /
    • 2010
  • 수영만에 설치된 모니터링 부이에서 관측된 해류, 바람, 파고자료와 부산항의 조석자료를 이용하여 강한 이안류가 발생했던 2009년 8월 13~15일의 물리환경을 분석하였다. 수영만의 조류는 단주기 해류성분과 비슷한 크기를 가지며 대조-소조에 따른 변화를 보인다. 이안류가 발생했을 때 북동풍이 강하게 불고 조류와 해류가 해운대 해안 쪽 방향으로 중첩되었다는 공통점이 있고, 8월 14일 오후에 이안류가 없었을 때는 파고와 조석은 유사한 조건이었지만 조류와 해류가 거의 반대방향이었다. 강한 바람은 큰 파랑을 동반하여 이안류 발생의 기본조건을 조성하지만 만 내의 해류에 미치는 국지적인 영향은 비교적 작다. 수영만에 인접한 세 해수욕장 중에서 해운대에서만 강한 이안류가 나타나는 데에는 해운대 중앙부의 특이하게 얕은 수중언덕이 외해에서 들어오는 파랑, 해류, 조류를 감쇠시키는 효과가 중요할 것으로 생각된다.