• Title/Summary/Keyword: Local watershed

Search Result 149, Processing Time 0.024 seconds

Study on Estimation Method of Water Cycle Goal in Waterfront City (수변도시의 물순환 목표 산정 방안 연구)

  • Kim, Jae-Moon;Baek, Jong-Seok;Shin, Hyun-Suk;Park, Kyoung-Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.475-487
    • /
    • 2020
  • The current water-management paradigm is changing from the expansion of reservoirs and facilities for simple outflows and non-point source management to the building of a sound water circulation system throughout the watershed. Based on this, water management for the watershed as a whole is establishing standards through local ordinances. The purpose of this study is to establish water cycle targets that are resilient to water management even after the development of cities in watersheds where water management is highly needed. This was done by referring to research and ordinances related to water circulation by local governments. A method is proposed based on a storage and infiltration method for rainfall. Through a comparison of percentiles, it was found that the water circulation target of a planned waterside city can be treated with 52% of total rainfall and 80% of rainfall of 17 mm per day. To quantitatively improve the quality results of these calculation procedures, it is estimated that the calculation of water cycle targets will be more reliable if other various variables such as the safety of low impact development factors or the selection of appropriate specifications are considered later.

Impact of the Crossed-Structures Installed in Streams and Prediction of Fish Abundance in the Seomjin River System, Korea (하천에 설치된 횡구조물의 영향 및 섬진강 수계의 어류 풍부도 예측)

  • Moon, Woon Ki;Noh, Da Hye;Yoo, Jae Sang;Lim, O Young;Kim, Myoung Chul;Kim, Ji Hye;Lee, Jeong Min;Kim, Jai Ku
    • Ecology and Resilient Infrastructure
    • /
    • v.9 no.2
    • /
    • pp.100-106
    • /
    • 2022
  • The relationships between river length and weir density versus fish species observed were analyzed for 210 local rivers in the Seomjin River system (SJR). A nonlinear exponential relationship between river length and number of fish species were observed. Model coefficient was 0.03 and coefficient of determinant (R2) was 0.59, meaning that about 59.0% of total variance was explained by river length variable. Predicted value by model and observed number of species showed a difference. About 110 local rivers (about 52.4%) showed lower value than predictive value. The average index of weir's density (IWD) in the SJR was about 2.7/km, which was significantly higher than that of other river basins. As a result of nonparametric 2-Kimensional Kolmogorov-Smirnov (2-DKS) analysis based on the IWD, the threshold value affecting fish diversity was about 2.5/km (Dmax=0.048, p<0.05). Above the threshold value, it means that the number of fish species would be decreased. In fact, the ratio of the expected species to the observed species was lowered to less than 70%, when the IWD is higher than the threshold value. To maintain aquatic ecological connectivity in future, it is necessary to manage IWD below the threshold value.

Modification of the Fixed Coefficient Method for the Parameter Estimation of Storage Function Method (저류함수법의 매개변수 추정을 위한 상수고정법의 개선)

  • Chung, Gunhui;Park, Hee-Seong
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.1
    • /
    • pp.73-85
    • /
    • 2013
  • The researches on the parameter estimation for storage function method have been conducted for a long time using different methods. However, the determination of the optimal parameters takes a long time and there is a controversy that the proposed optimal parameters do not likely represent the physical characteristics of watershed. In this study, the characteristics of the continuity and storage function equation was analyzed and sensitivities were evaluated. As the result, the only optimal solution is suggested among several local optimums. It is also shown that the lag time is able to be determined using the direct runoff starting time of the watershed. From the sensitivity analysis, it is also proved that the determination of the lag time is very important and the only optimal solution could be found easily after selecting the lag time. Therefore, unlike the traditional optimization method, the proposed method does not take a long time to find the optimal solution which is depending on the characteristics of the rainfall events. The fixed coefficient method which is a method to estimate the optimal parameters of storage function method has been modified using the proposed method. Therefore, the practical efficiency to apply storage function method could be enhanced by applying the proposed method. While the traditional method takes care only the error of the runoff hydrograph, it is very important that the proposed method considers the characteristics of the watershed.

A Study on the Water Quality Improvement of Major Tributaries in Seoul, Applying Watershed Evaluation Techniques (총량관리 단위유역 평가기법을 활용한 서울특별시 주요 유입 지천의 수질개선효과에 관한 연구)

  • Shim, Kyuhyun;Kim, Gyeonghoon;Im, Taehyo;Kim, Youngseok;Kim, Seongmin
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.1
    • /
    • pp.32-46
    • /
    • 2021
  • South Korea has been divided into quantities and water quality, and due to a revision of the Government Organization law in June 2018, the controversial water management system was integrated into the Ministry of Environment. The total Maximum Daily Loads System has been called the flower of water quality control, and since 2004, all three major river systems which have been introduced into the Han River system, despite its various difficult environments, and subsequently leading to all of the four major rivers undergoing obligatory implementation since 2013. Currently, the target TMDL (Han River Phase 1 and Other Water Systems Phase 3) for the 2020 stage has been implemented. The domestic TMDL established a basic plan for calculating the load which complies with the unit watershed's target water quality, as well as an implementation plan for annual load management, both which have been institutionalized in order to evaluate load compliance on a repeated annual basis. Local governments ask external organizations to conduct investigations every year in order to assess the transition, which thereby requires tens of millions of won every year. Therefore, an assessment and management model that can be easily operated at the TMDL personnel level is required. In this study, when the Han river Water System TMDL was implemented in earnest, we confirmed the the water quality improvement effect when TMDL was introduced to major inflow tributaries (TancheonA, JungnangA, AnyangA) under the Seoul City's jurisdiction through the use of the total amount control unit basin evaluation technique. By presenting customized management measures, we propose the guidelines that are necessary for determining more effective water environmental policies.

Patterns of Forest Landscape Structure due to Landcover Change in the Nakdong River Basin (토지이용변화에 따른 낙동강 유역 산림경관의 구조적 패턴 분석)

  • Park, Kyung-Hun;Jung, Sung-Gwan;Kwon, Jin-O;Oh, Jeong-Hak
    • Journal of Korean Society of Rural Planning
    • /
    • v.11 no.4 s.29
    • /
    • pp.47-57
    • /
    • 2005
  • The goal of this research is to evaluate landscape-ecological characteristics of watersheds in the Nakdong River Basin by using Geogaphic Information System (GIS) and landscape indices for integation of spatio-temporal informations and multivariate statistical techniques for quantitative analysis of forest landscape. Fragmentation index and change matrix techniques using factor analysis and grid overlay method were used to efficiently analyze and manage huge amount of information for ecological-environmental assessment (land-cover and forest landscape patterns). According to the results based on the pattern analysis of land-cover changes using the change detection matrix between 1980s and 1990s, addition on 750km$^2$ became urbanized areas. The altered 442.04km$^2$ was agricultural areas which is relatively easy for shifting of land-use, and 205.1km$^2$ of forests became urbanized areas, and average elevation and slope of the whole altered areas were 75m and 4$^{\circ}$. On the other hand, 120km$^2$ of urban areas were changed into other areas (i.e., agricultural areas and green space), and fortunately, certain amount of naturalness had been recovered. But still those agricultural areas and fallow areas, which were previously urban areas, had high potential of re-development for urbanization due to their local conditions. According to the structural analysis of forest landscape using the landscape indices, the forest fragmentation of watersheds along the main stream of the Nakdong River was more severe than my other watersheds. Furthermore, the Nakdong-sangju and Nakdong-miryang watersheds had unstable forest structures as well as least amount of forest quantity. Thus, these areas need significant amount of forest through a new forest management policy considering local environmental conditions.

A Study of ATM filter for Resolving the Over Segmentation in Image Segmentation of Region-based method (영역기반 방법의 영상 분할에서 과분할 방지를 위한 Adaptive Trimmed Mean 필터에 관한 연구)

  • Lee, Wan-Bum
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.3
    • /
    • pp.42-47
    • /
    • 2007
  • Video Segmentation is an essential part in region-based video coding and any other fields of the video processing. Among lots of methods proposed so far, the watershed method in which the region growing is performed for the gradient image can produce well-partitioned regions globally without any influence on local noise and extracts accurate boundaries. But, it generates a great number of small regions, which we call over segmentation problem. Therefore we proposes that adaptive trimmed mean filter for resolving the over segmentation of image. Simulation result, we confirm that proposed ATM filter improves the performance to remove noise and reduces damage for the clear degree of image in case of the noise ratio of 20% and over.

Application and Evaluation of Water Environmental Education Program using Streams (소하천 물 환경교육 프로그램의 적용 및 평가)

  • Kim, Jeong-Hwa;Lee, Du-Gon
    • Hwankyungkyoyuk
    • /
    • v.24 no.2
    • /
    • pp.1-20
    • /
    • 2011
  • The purpose of this research is to apply and evaluate the Water Environmental Education Program Using Streams(WEES) to pre-service teachers. WEES is developed to help the teachers increase their professionalism of incorporating a local environment into their inquiry teaching. The subjects of the study include the juniors of the Environmental Education Major at the Korea National University of Education. For the purpose this study, educational criticism about WEES was performed. The subject students were observed throughout the program application, after which a survey and in-depth interviews were carried out. As a result, the implementation elements and content organization of the WEES were found to be implemented in the application process in a satisfying level. In the content organization of the program, the preliminary preparation, visual assessment, and inquiry planning were organically connected with each other for inquiry purposes. The Intrinsic value of environmental education was also demonstrated in the implementation elements and content organization. Overall, the stream turned out to have a great value of environmental education and a potential as a place and material for environmental education. The great significance of the study can be found in that WEES took into account not only the characteristics of the ENVISION based on the watershed concept, but also the situations of Korea's environmental education and exploration from the perspective of environmental studies.

  • PDF

Estimation of Radial Spectrum for Orographic Storm (산지성호우의 환상스팩트럼 추정)

  • Lee, Jae Hyoung;Sonu, Jung Ho;Kim, Min Hwan;Shim, Myung Pil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.4
    • /
    • pp.53-66
    • /
    • 1990
  • Rainfall is a phenomenon that shows a high variability both in space and time, Hy drologists are usually interested in the description of spatial distribution of rainfall over watershed. The theory of Kriging, generalized covariance technique using nonstationary mean in the regions under orographic effect, was chosen to construct random surface of total storm depth. For the constructed random surface, the double Fourier analysis of the total storm depths was performed, and the principal harmonics of storm were determined. The local component, or storm residuals was obtained by subtracting the periodic component of the storm from total storm depths. It is assumed that the residuals are a sample function of a homogeneous random field. This random field can be characterized by an isotropic one dimensional autocorrelation function or its corresponding spectral density function. Under this assumption, this study proposed a theorectical model for spectral density function adapted to two watersheds.

  • PDF

Who Should Control the Integrated Management System for Sewerage Facilities in the Upper Reaches of Multi-Purpose Dams in Korea?

  • Park, Kyoo-Hong;Kim, Hyung-Joon
    • Environmental Engineering Research
    • /
    • v.15 no.2
    • /
    • pp.99-103
    • /
    • 2010
  • Integrated management systems (IMS) that control entire sewerage facilities in the upper reaches of multi-purpose dams are being constructed for their efficient operation and management. However, because the IMS installed in a watershed belong to several local government bodies, significant conflict would be expected between stakeholders in the process of deciding who should control the IMS after completion of the construction that was initially implemented under the support of central government. The objective of this study was to suggest a decision making to determine who should control the IMS for sewerage facilities in the upper reaches of multipurpose dams in Korea, using the analytic hierarchy process (AHP). Three alternatives were selected to determine who should control the IMS for sewerage facilities: commissioning to public corporations, commissioning to private corporations, and a role-sharing partnership. In using the AHP technique, the emphasis was on comparing public interests, economics, efficiency, sustainability, specialty, grievance mediation and receptiveness. As a result, building a role-sharing partnership received the highest score. Commissioning to a special institute was also suggested as an alternative as this showed a score similar to that of building a role-sharing partnership.

Development of Water Quality Modeling in the United States

  • Ambrose, Robert B;Wool, Tim A;Barnwell, Thomas O.
    • Environmental Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.200-210
    • /
    • 2009
  • The modern era of water quality modeling in the United States began in the 1960s. Pushed by advances in computer technology as well as environmental sciences, water quality modeling evolved through five broad periods: (1) initial model development with mainframe computers (1960s - mid 1970s), (2) model refinement and generalization with minicomputers (mid 1970s - mid 1980s), (3) model standardization and support with microcomputers (mid 1980s - mid 1990s), (4) better model access and performance with faster desktop computers running Windows and local area networks linked to the Internet (mid 1990s - early 2000s), and (5) model integration and widespread use of the Internet (early 2000s - present). Improved computer technology continues to drive improvements in water quality models, including more detailed environmental analysis (spatially and temporally), better user interfaces and GIS software, more accessibility to environmental data from on-line repositories, and more robust modeling frameworks linking hydrodynamics, water quality, watershed and atmospheric models. Driven by regulatory needs and advancing technology, water quality modeling will continue to improve to better address more complicated water bodies and pollutant types, and more complicated management questions. This manuscript describes historical trends in water quality model development in the United States, reviews current efforts, and projects promising future directions.