• Title/Summary/Keyword: Local storm

Search Result 92, Processing Time 0.021 seconds

Research on flood risk forecast method using weather ensemble prediction system in urban region (앙상블 기상예측 자료를 활용한 도시지역의 홍수위험도 예측 방안에 관한 연구)

  • Choi, Youngje;Yi, Jaeeung
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.10
    • /
    • pp.753-761
    • /
    • 2019
  • Localized heavy storm is one of the major causes of flood damage in urban regions. According to the recent disaster statistics in South Korea, the frequency of urban flood is increasing more frequently, and the scale is also increasing. However, localized heavy storm is difficult to predict, making it difficult for local government officials to deal with floods. This study aims to construct a Flood risk matrix (FRM) using ensemble weather prediction data and to assess its applicability as a means of reducing damage by securing time for such urban flood response. The FRM is a two-dimensional matrix of potential impacts (X-axis) representing flood risk and likelihood (Y-axis) representing the occurrence probability of dangerous weather events. To this end, a regional FRM was constructed using historical flood damage records and probability precipitation data for basic municipality in Busan and Daegu. Applicability of the regional FRMs was assessed by applying the LENS data of the Korea Meteorological Administration on past heavy rain events. As a result, it was analyzed that the flood risk could be predicted up to 3 days ago, and it would be helpful to reduce the damage by securing the flood response time in practice.

A Study on the Stormwater Drainage Method of Overflow Type for the Prevention of Urban Flood due to Abnormal Precipitation (이상강우 발생시 도시침수 방지를 위한 월류형 우수배수방법 연구)

  • Seo, Se Deok;Park, Hyung Keun;Kim, Tae Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.5
    • /
    • pp.569-577
    • /
    • 2019
  • Urban flooding has been a frequent phenomenon in recent years caused by the increase in maximum stormwater runoff arising from abnormal rainfall due to global warming, urban development, and development of lowlands according to population inflows. In order to respond positively against abnormal precipition in the city, it is necessary to check the GWI (Green Water Infra) effect and effectively utilize the existing stormwater detention tanks and treat stormwater to prevent local flooding. In this study, Overflow Type stormwater drainage methods are evaluated as a method of preventing urban flooding in abnormal precipitation using the Dynamic Wave Analysis SWMM (Storm Water Management Model) provided by the United States Environmental Protection Agency. Comparing and analyzing the Upward Watergate Type and Overflow Type, it was analyzed that the Overflow Type reduces the maximum flood discharge by 61 % and the total flood volume by 56 % in the rainfall of Typhoon Kong-rey. The application of the Overflow Type and the natural-pneumatic drainage method to the rainfall of Typhoon Soulik resulted in a 20 % reduction in maximum flood runoff and a 67 % reduction in total flood quantity. Therefore, as a solution to the abnormal rain fall, it is possible to improve the existing stormwater detection tank and install additional facilities. It is expected to be economically possible to strom drainage under limited conditions.

Vulnerability Assessment of Soil Loss in Farm area to Climate Change Adaption (기후변화 적응 농경지 토양유실 취약성 평가)

  • Oh, Young-Ju;Kim, Myung-Hyun;Na, Young-Eun;Hong, Sun-Hee;Paik, Woen-Ki;Yoon, Seong-Tak
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.5
    • /
    • pp.711-716
    • /
    • 2012
  • Due to the climate change in South Korea the annual total precipitation will increase by 17 percent by 2100. Rainfall is concentrated during the summer in South Korea and the landslide of farmland by heavy rain is expected to increase. Because regional torrential rains accompanied by a storm continue to cause the damage in farmland urgent establishment of adaptation plant for minimizing the damage is in need. In this study we assessed vulnerability of landslide of farmland by heavy rain for local governments. Temporal resolution is 2000 year and the future 2020 year, 2050 year, 2100 year via A1B scenario. Vulnerability of local government were evaluated by three indices such as climate exposure, sensitivity, adaptive capacity and each index is calculated by selected alternative variable. Collected data was normalized and then multiplied by weight value that was elicited in delphi investigation. Current vulnerability is concentrated in Jeju island and Gyeongsangnam-do, however, it is postulated that Kangwon-do will be vulnerable in the future. Through this study, local governments can use the data to establish adaptation plans for farmland landslide by climate change.

Application Analysis of GIS Based Distributed Model Using Radar Rainfall (레이더강우를 이용한 GIS기반의 분포형모형 적용성 분석)

  • Park, Jin-Hyeog;Kang, Boo-Sik;Lee, Geun-Sang
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.16 no.1
    • /
    • pp.23-32
    • /
    • 2008
  • According to recent frequent local flash flood due to climate change, the very short-term rainfall forecast using remotely sensed rainfall like radar is necessary to establish. This research is to evaluate the feasibility of GIS-based distributed model coupled with radar rainfall, which can express temporal and spatial distribution, for multipurpose dam operation during flood season. $Vflo^{TM}$ model was used as physically based distributed hydrologic model. The study area was Yongdam dam basin ($930\;km^2$) and the 3 storm events of local convective rainfall in August 2005, and the typhoon.Ewiniar.and.Bilis.collected from Jindo radar was adopted for runoff simulation. Distributed rainfall consistent with hydrologic model grid resolution was generated by using K-RainVieux, pre-processor program for radar rainfall. The local bias correction for original radar rainfall shows reasonable results of which the percent error from the gauge observation is less than 2% and the bias value is $0.886{\sim}0.908$. The parameters for the $Vflo^{TM}$ were estimated from basic GIS data such as DEM, land cover and soil map. As a result of the 3 events of multiple peak hydrographs, the bias of total accumulated runoff and peak flow is less than 20%, which can provide a reasonable base for building operational real-time short-term rainfall-runoff forecast system.

  • PDF

The Impacts on Flow by Hydrological Model with NEXRAD Data: A Case Study on a small Watershed in Texas, USA (레이더 강수량 데이터가 수문모델링에서 수량에 미치는 영향 -미국 텍사스의 한 유역을 사례로-)

  • Lee, Tae-Soo
    • Journal of the Korean Geographical Society
    • /
    • v.46 no.2
    • /
    • pp.168-180
    • /
    • 2011
  • The accuracy of rainfall data for a hydrological modeling study is important. NEXRAD (Next Generation Radar) rainfall data estimated by WRS-88D (Weather Surveillance Radar - 1988 Doppler) radar system has advantages of its finer spatial and temporal resolution. In this study, NEXRAD rainfall data was tested and compared with conventional weather station data using the previously calibrated SWAT (Soil and Water Assessment Tool) model to identify local storms and to analyze the impacts on hydrology. The previous study used NEXRAD data from the year of 2000 and the NEXRAD data was substituted with weather station data in the model simulation in this study. In a selected watershed and a selected year (2006), rainfall data between two datasets showed discrepancies mainly due to the distance between weather station and study area. The largest difference between two datasets was 94.5 mm (NEXRAD was larger) and 71.6 mm (weather station was larger) respectively. The differences indicate that either recorded rainfalls were occurred mostly out of the study area or local storms only in the study area. The flow output from the study area was also compared with observed data, and modeled flow agreed much better when the simulation used NEXRAD data.

A Study on the Consciousness Survey for the Establishment of Safety Village in Disaster (재난안전마을 구축을 위한 의식조사 연구)

  • Koo, Wonhoi;Baek, Minho
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.3
    • /
    • pp.238-246
    • /
    • 2018
  • Purpose: The purpose of this study is to examine the directions for establishing a disaster safety village in rural areas where damage from a similar type of disaster occurs repeatedly by conducting the consciousness survey targeting at experts and disaster safety officials in a local government. Method: The risks of disaster in rural areas were examined and the concept and characteristics of disaster safety village which is a measure on the basis of Myeon (township) among the measures of village unit were examined in order to carry out this study. In addition, opinion polling targeting at officials-in-charge in the local government and survey targeting at experts in disaster safety and building village were conducted. Based on the findings, the directions for establishing a disaster safety village that fitted the characteristics of rural areas were examined. Result: The officials-in-charge in the local government answered that rural areas have a high risk of storm and flood such as heavy snowing, typhoon, drought, and heavy rain as well as forest fire, and it is difficult to draw voluntary participation of farmers for disaster management activities due to their main duties. They also replied that active support and participation of residents in rural areas are necessary for future improvement measures. The experts mostly replied that the problem of disaster safety village project is a temporary project which has low sustainability, and the lack of connections between the central government, local governments and residents was stressed out as the difficulties. They said that measures to secure the budget and the directions of project promotion system should be promoted by the central government, local governments and residents together. Conclusion: The results of this study are as follows. First, a disaster safety village should be established in consideration of the disaster types and characteristics. Second, measures to secure the budget for utilizing the central government fund as well as local government fund and village development fund should be prepared when establishing and operating a disaster safety village in rural areas. Third, measures to utilize a disaster safety village in rural areas for a long period of time such as the re-authorization system should be prepared in order to continuously operate and manage such villages after its establishment. Fourth, detailed measures that allow residents of rural areas to positively participate in the activities for establishing a disaster safety village in rural areas should be prepared.

Estimation of irrigation return flow from paddy fields on agricultural watersheds (농업유역의 논 관개 회귀수량 추정)

  • Kim, Ha-Young;Nam, Won-Ho;Mun, Young-Sik;An, Hyun-Uk;Kim, Jonggun;Shin, Yongchul;Do, Jong-Won;Lee, Kwang-Ya
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.1
    • /
    • pp.1-10
    • /
    • 2022
  • Irrigation water supplied to the paddy field is consumed in the amount of evapotranspiration, underground infiltration, and natural and artificial drainage from the paddy field. Irrigation return flow is defined as the excess of irrigation water that is not consumed by evapotranspiration and crop, and which returns to an aquifer by infiltration or drainage. The research on estimating the return flow play an important part in water circulation management of agricultural watershed. However, the return flow rate calculations are needs because the result of calculating return flow is different depending on irrigation channel water loss, analysis methods, and local characteristics. In this study, the irrigation return flow rate of agricultural watershed was estimated using the monitoring and SWMM (Storm Water Management Model) modeling from 2017 to 2020 for the Heungeop reservoir located in Wonju, Gangwon-do. SWMM modeling was performed by weather data and observation data, water of supply and drainage were estimated as the result of SWMM model analysis. The applicability of the SWMM model was verified using RMSE and R-square values. The result of analysis from 2017 to 2020, the average annual quick return flow rate was 53.1%. Based on these results, the analysis of water circulation characteristics can perform, it can be provided as basic data for integrated water management.

A Study on the Ripple Effect Economy of Busan Ubiquitous-Safety Realization on Using an Input-Output Model (I-O모형을 이용한 부산 U-방재 실현의 경제적 파급 효과 분석에 관한 연구)

  • Ryu, Tae-Chang;Kim, Tae-Min;Kim, Gyeong-Su
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.6
    • /
    • pp.93-100
    • /
    • 2008
  • Dense of population construction and high density of skyscraper, and geological characteristics caused natural disasters(e.g. typhoon, tsunami, flood, storm, earthquake, etc.) and manmade disasters(e.g. fire, collapse, explosion, traffic accident, etc.). the extent and scale of the disaster are getting larger. To cope with such problems, Busan City has established the basic plan to secure the life and property of the citizens through model strategy and design of Ubiquitous-Safety Busan. This study quantitatively analyzed the ripple effect on local economy through the fulfillment of Ubiquitous-Safety. The production inducing effect of 250 billion won directly and indirectly can be estimated due to the realization of Ubiquitous-Safety. The value added effect of 115 billion won can be estimated. the employment effect of 5,580 persons can be generated with income effect of 51 billion won.

A Study on Making Map of Flood Using Digital Elevation Model (DEM) (수치표고모형 (DEM)을 이용한 침수재해 지도작성에 관한 연구)

  • Lim, Hyun Taek;Kim, Jae Hwi;Lee, Hak Beom;Park, Sung Yong;Kim, Yong Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.2
    • /
    • pp.81-90
    • /
    • 2017
  • Recent floodplain data are important for river master plan, storm and flood damage reduction comprehensive plan and pre-disaster impact assessment. Hazard map, base of floodplain data, is being emphasized as important method of non-structural flood prevention and consist of inundation trace map, inundation expected map and hazard information map. Inundation trace map describes distribution of area that damaged from typhoons, heavy rain and tsunamis and includes identified flood level, flood depth and flood time from flooding area. However due to lack of these data by local government, which are foundational and supposed to be well prepared nationwide, having hard time for making inundation trace map or hazard information map. To overcome this problem, time consumption and budget reduction is required through various research. From this study, DEM (Digital Elevation Model) from image material from UAVS (Unmanned Aerial Vehicle System) and numeric geographic map from National Geographic Information Institute are used for calculating flooding damaged area and compared with inundation trace map. As results, inundation trace map DEM based on image material from UAVS had better accuracy than that used DEM based on numeric geographic map. And making hazard map could be easier and more accurate by utilizing image material from UAVS than before.

Gale Disaster Damage Investigation Process Provement Plan according to Correlation Analysis between Wind Speed and Damage Cost -Centering on Disaster Year Book- (풍속과 피해액 간 상관관계분석에 따른 강풍재해피해조사 프로세스 개선방안 -재해연보를 중심으로-)

  • Song, Chang Young;Yang, Byong Soo
    • Journal of the Korean Society of Safety
    • /
    • v.31 no.2
    • /
    • pp.119-126
    • /
    • 2016
  • Across the world, the industrialization has increased the frequency of climate anomaly. The size of damage due to recent natural disasters is growing large and fast, and the human damage and economic loss due to disasters are consistently increasing. Urbanization has a structure vulnerable to natural disasters. Therefore, in order to reduce damage from natural disasters, both hardware and software approaches should be utilized. Currently, however, the development of a statistical access process for 'analysis of disaster occurrence factor' and 'prediction of damage costs' for disaster prevention and overall disaster management is inadequate. In case of local governments, overall disaster management system is not established, or even if it is established, unscientific classification system and management lead to low utility of natural statistics of disaster year book. Therefore, in order to minimize disaster damage and for rational disaster management, the disaster damage survey process should be improved. This study selected gale as the focused analysis target among natural disasters recorded in disaster year book such as storm, torrential rain, gale, high seas, and heavy snow, and analyzed disaster survey process. Based on disaster year book, the gale damage size was analyzed and the issues occurring from the correlation of gale and damage amount were examined, so as to suggest an improvement plan for reliable natural disaster information collection and systematic natural disaster damage survey.