The Impacts on Flow by Hydrological Model with NEXRAD Data: A Case Study on a small Watershed in Texas, USA

레이더 강수량 데이터가 수문모델링에서 수량에 미치는 영향 -미국 텍사스의 한 유역을 사례로-

  • Lee, Tae-Soo (Spatial Science Laboratory, Texas A&M University, College Station)
  • Received : 2011.04.06
  • Accepted : 2011.04.30
  • Published : 2011.04.30

Abstract

The accuracy of rainfall data for a hydrological modeling study is important. NEXRAD (Next Generation Radar) rainfall data estimated by WRS-88D (Weather Surveillance Radar - 1988 Doppler) radar system has advantages of its finer spatial and temporal resolution. In this study, NEXRAD rainfall data was tested and compared with conventional weather station data using the previously calibrated SWAT (Soil and Water Assessment Tool) model to identify local storms and to analyze the impacts on hydrology. The previous study used NEXRAD data from the year of 2000 and the NEXRAD data was substituted with weather station data in the model simulation in this study. In a selected watershed and a selected year (2006), rainfall data between two datasets showed discrepancies mainly due to the distance between weather station and study area. The largest difference between two datasets was 94.5 mm (NEXRAD was larger) and 71.6 mm (weather station was larger) respectively. The differences indicate that either recorded rainfalls were occurred mostly out of the study area or local storms only in the study area. The flow output from the study area was also compared with observed data, and modeled flow agreed much better when the simulation used NEXRAD data.

강수량 데이터의 정확성은 수리모델링에서 중요하다 WRS-88D (Weather Surveillance Radar - 1988 Doppler) 레이더 시스템에서 예측하는 NEXRAD (Next Generation Radar) 강수량 데이터는 높은 시, 공간 해상도를 갖는 데이터라는 장점이 있다. 이 연구에서는 검증된 SWAT (Soil and Water Assessment Tool) 모델을 이용한 이 전의 연구를 바탕으로 일반 가상관측소와 NEXRAD 강수량 데이터를 비교하여 국지적 강우와 그 강우가 유출량에 미치는 영향에 대해 분석하였다. 이 연구에서는 NEXRAD 강수량 데이터를 이용한 선행 연구에 기상관측소의 데이터를 대체하여 시뮬레이션을 함으로써 그 차이를 알아 보고자 하였다. 한 유역과 1년간의 데이터를 선정하여 비교 분석한 경과 두 강수량 데이터는 큰 차이를 보였다. 이는 기상관측소의 위치가 연구지역과 거리가 있기 때문이다. 가장 큰 강수량의 차이를 보일 때는 3 차이가 94.5mm (NEXRAD 데이터가 더 큰 경우) 와 71.6mm (기상 관측소의 데이터가 더 큰 경우) 까지 나타났다. 이 차이는 강우가 대부분 실제로는 연구지역 밖에서 나타났거나 연구지역만의 국지적 강우임을 나타내는 것이다. 유출량의 비교에서는 NEXRAD를 이용한 시뮬레이션이 측정치에 더 가깝게 예측하였다.

Keywords

References

  1. Arnold, J. G., Srinivasan, R., Muttiah, R. S., and Williams, J.R., 1998, Large area hydrologic modeling and assessment, Part I: Model Development. Journal of the American Water Resources Association, 34(1), 73-89. https://doi.org/10.1111/j.1752-1688.1998.tb05961.x
  2. Fulton, R. A., Breidenbach, J. P., Seo, D., Miller, D. A., and Bannon, T. O., 1998, The WSR-88D rainfall algorithm. Weather and Forecasting, 13, 377- 395. https://doi.org/10.1175/1520-0434(1998)013<0377:TWRA>2.0.CO;2
  3. Johnson, D., Smith, M., Koren, V., and Finnerty, B., 1999, Comparing mean areal precipitation estimates from NEXRAD and rain gauge networks, Journal of Hydrologic Engineering, 4(2), 117-124. https://doi.org/10.1061/(ASCE)1084-0699(1999)4:2(117)
  4. Kim, J. and Kim, I., 2010, The international trend for social and economical evaluation of meteorological information (in Korean), Meteorological Technology & Policy, 3(4), 123-130.
  5. Klazura, G. E. and Imy, D. E., 1993, A description of the initial set of analysis products available from the NEXRAD WSR-88D system, Bulletin of American Meteorological Society, 74(7), 1293-1311. https://doi.org/10.1175/1520-0477(1993)074<1293:ADOTIS>2.0.CO;2
  6. Krajewski, W. F., 1987, Cokriging radar-rainfall and rain gage data, Journal of Geophysical Research, 92(8), 9571-9580. https://doi.org/10.1029/JD092iD08p09571
  7. Lee, T., Srinivasan, R., Moon, J., and Omani, N., 2011, Estimation of fresh water inflow to bays from gaged and ungaged watersheds, (Accepted). Applied Engineering in Agriculture.
  8. Moon, J., Srinivasan, R., and Jacobs, J. H., 2004, Stream flow estimation using spatially distributed rainfall in the Trinity River Basin, TX, Transaction of American Society of Agricultural Engineers, 47(5), 1445-1451. https://doi.org/10.13031/2013.17624
  9. Nash, J. E. and Sutcliffe, J. V., 1970, River flow forecasting through conceptual models: Part I - A discussion of principles, Journal of Hydrology, 10, 282-190. https://doi.org/10.1016/0022-1694(70)90255-6
  10. Novotny, V. and Olem, H., 1994, Water Quality: Prevention, Identification, and Management of Diffuse Pollution, Van Nostrand Reinhold, New York, NY.
  11. Smith, J. A. and Krajewski, W. F., 1991, Estimation of the mean field bias of radar rainfall estimates, Journal of Applied Meteorology, 30, 397-412. https://doi.org/10.1175/1520-0450(1991)030<0397:EOTMFB>2.0.CO;2
  12. Smith, J. A., Seo, D., Baeck, M. L., and Hudlow, M. D., 1996, An inter-comparison study of NEXRAD precipitation estimates, Water Resources Research, 32(7), 2035-2045. https://doi.org/10.1029/96WR00270
  13. Young, B. C., Bradley, A. A., Krajewski, W. F., and Kruger, A., 2000, Evaluating NEXRAD multisensor precipitation estimates for operational hydrologic forecasting, American Meteorological Society, 1, 241-254.