• Title/Summary/Keyword: Local search

Search Result 1,003, Processing Time 0.022 seconds

Hybrid Genetic Algorithm Reinforced by Fuzzy Logic Controller (퍼지로직제어에 의해 강화된 혼합유전 알고리듬)

  • Yun, Young-Su
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.28 no.1
    • /
    • pp.76-86
    • /
    • 2002
  • In this paper, we suggest a hybrid genetic algorithm reinforced by a fuzzy logic controller (flc-HGA) to overcome weaknesses of conventional genetic algorithms: the problem of parameter fine-tuning, the lack of local search ability, and the convergence speed in searching process. In the proposed flc-HGA, a fuzzy logic controller is used to adaptively regulate the fine-tuning structure of genetic algorithm (GA) parameters and a local search technique is applied to find a better solution in GA loop. In numerical examples, we apply the proposed algorithm to a simple test problem and two complex combinatorial optimization problems. Experiment results show that the proposed algorithm outperforms conventional GAs and heuristics.

Derivative Evaluation and Conditional Random Selection for Accelerating Genetic Algorithms

  • Jung, Sung-Hoon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.1
    • /
    • pp.21-28
    • /
    • 2005
  • This paper proposes a new method for accelerating the search speed of genetic algorithms by taking derivative evaluation and conditional random selection into account in their evolution process. Derivative evaluation makes genetic algorithms focus on the individuals whose fitness is rapidly increased. This accelerates the search speed of genetic algorithms by enhancing exploitation like steepest descent methods but also increases the possibility of a premature convergence that means most individuals after a few generations approach to local optima. On the other hand, derivative evaluation under a premature convergence helps genetic algorithms escape the local optima by enhancing exploration. If GAs fall into a premature convergence, random selection is used in order to help escaping local optimum, but its effects are not large. We experimented our method with one combinatorial problem and five complex function optimization problems. Experimental results showed that our method was superior to the simple genetic algorithm especially when the search space is large.

ALGORITHM FOR WEBER PROBLEM WITH A METRIC BASED ON THE INITIAL FARE

  • Kazakovtsev, Lev A.;Stanimirovic, Predrag S.
    • Journal of applied mathematics & informatics
    • /
    • v.33 no.1_2
    • /
    • pp.157-172
    • /
    • 2015
  • We introduce a non-Euclidean metric for transportation systems with a defined minimum transportation cost (initial fare) and investigate the continuous single-facility Weber location problem based on this metric. The proposed algorithm uses the results for solving the Weber problem with Euclidean metric by Weiszfeld procedure as the initial point for a special local search procedure. The results of local search are then checked for optimality by calculating directional derivative of modified objective functions in finite number of directions. If the local search result is not optimal then algorithm solves constrained Weber problems with Euclidean metric to obtain the final result. An illustrative example is presented.

An Integer Programming-based Local Search for the Set Partitioning Problem

  • Hwang, Junha
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.9
    • /
    • pp.21-29
    • /
    • 2015
  • The set partitioning problem is a well-known NP-hard combinatorial optimization problem, and it is formulated as an integer programming model. This paper proposes an Integer Programming-based Local Search for solving the set partitioning problem. The key point is to solve the set partitioning problem as the set covering problem. First, an initial solution is generated by a simple heuristic for the set covering problem, and then the solution is set as the current solution. Next, the following process is repeated. The original set covering problem is reduced based on the current solution, and the reduced problem is solved by Integer Programming which includes a specific element in the objective function to derive the solution for the set partitioning problem. Experimental results on a set of OR-Library instances show that the proposed algorithm outperforms pure integer programming as well as the existing heuristic algorithms both in solution quality and time.

Optimal distribution of metallic energy dissipation devices in multi-story buildings via local search heuristics

  • Zongjing, Li;Ganping, Shu;Zhen, Huang;Jing, Cao
    • Earthquakes and Structures
    • /
    • v.23 no.5
    • /
    • pp.419-430
    • /
    • 2022
  • The metallic energy dissipation device (EDD) has been widely accepted as a useful tool for passive control of buildings against earthquakes. The distribution of metallic EDDs in a multi-story building may have significant influence on its seismic performance, which can be greatly enhanced if the distribution scheme is properly designed. This paper addresses the optimal distribution problem in the aim of achieving a desired level of performance using the minimum number of metallic EDDs. Five local search heuristic algorithms are proposed to solve the problem. Four base structures are presented as numerical examples to verify the proposed algorithms. It is indicated that the performance of different algorithms may vary when applied in different situations. Based on the results of the numerical verification, the recommended guidelines are finally proposed for choosing the appropriate algorithm in different occasions.

Optimization of 3G Mobile Network Design Using a Hybrid Search Strategy

  • Wu Yufei;Pierre Samuel
    • Journal of Communications and Networks
    • /
    • v.7 no.4
    • /
    • pp.471-477
    • /
    • 2005
  • This paper proposes an efficient constraint-based optimization model for the design of 3G mobile networks, such as universal mobile telecommunications system (UMTS). The model concerns about finding a set of sites for locating radio network controllers (RNCs) from a set of pre-defined candidate sites, and at the same time optimally assigning node Bs to the selected RNCs. All these choices must satisfy a set of constraints and optimize an objective function. This problem is NP-hard and consequently cannot be practically solved by exact methods for real size networks. Thus, this paper proposes a hybrid search strategy for tackling this complex and combinatorial optimization problem. The proposed hybrid search strategy is composed of three phases: A constraint satisfaction method with an embedded problem-specific goal which guides the search for a good initial solution, an optimization phase using local search algorithms, such as tabu algorithm, and a post­optimization phase to improve solutions from the second phase by using a constraint optimization procedure. Computational results show that the proposed search strategy and the model are highly efficient. Optimal solutions are always obtained for small or medium sized problems. For large sized problems, the final results are on average within $5.77\%$ to $7.48\%$ of the lower bounds.

An Enhanced Genetic Algorithm for Global and Local Optimization Search (전역 및 국소 최적화탐색을 위한 향상된 유전 알고리듬의 제안)

  • Kim, Young-Chan;Yang, Bo-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.6
    • /
    • pp.1008-1015
    • /
    • 2002
  • This paper proposes a combinatorial method to compute the global and local solutions of optimization problem. The present hybrid algorithm is the synthesis of a genetic algorithm and a local concentrate search algorithm (simplex method). The hybrid algorithm is not only faster than the standard genetic algorithm, but also gives a more accurate solution. In addition, this algorithm can find both the global and local optimum solutions. An optimization result is presented to demonstrate that the proposed approach successfully focuses on the advantages of global and local searches. Three numerical examples are also presented in this paper to compare with conventional methods.

AN APPROXIMATE GREEDY ALGORITHM FOR TAGSNP SELECTION USING LINKAGE DISEQUILIBRIUM CRITERIA

  • Wang, Ying;Feng, Enmin;Wang, Ruisheng
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.3_4
    • /
    • pp.493-500
    • /
    • 2008
  • In this paper, we first construct a mathematical model for tagSNP selection based on LD measure $r^2$, then aiming at this kind of model, we develop an efficient algorithm, which is called approximate greedy algorithm. This algorithm is able to make up the disadvantage of the greedy algorithm for tagSNP selection. The key improvement of our approximate algorithm over greedy algorithm lies in that it adds local replacement(or local search) into the greedy search, tagSNP is replaced with the other SNP having greater similarity degree with it, and the local replacement is performed several times for a tagSNP so that it can improve the tagSNP set of the local precinct, thereby improve tagSNP set of whole precinct. The computational results prove that our approximate greedy algorithm can always find more efficient solutions than greedy algorithm, and improve the tagSNP set of whole precinct indeed.

  • PDF

Imputation Method Using Local Linear Regression Based on Bidirectional k-nearest-components

  • Yonggeol, Lee
    • Journal of information and communication convergence engineering
    • /
    • v.21 no.1
    • /
    • pp.62-67
    • /
    • 2023
  • This paper proposes an imputation method using a bidirectional k-nearest components search based local linear regression method. The bidirectional k-nearest-components search method selects components in the dynamic range from the missing points. Unlike the existing methods, which use a fixed-size window, the proposed method can flexibly select adjacent components in an imputation problem. The weight values assigned to the components around the missing points are calculated using local linear regression. The local linear regression method is free from the rank problem in a matrix of dependent variables. In addition, it can calculate the weight values that reflect the data flow in a specific environment, such as a blackout. The original missing values were estimated from a linear combination of the components and their weights. Finally, the estimated value imputes the missing values. In the experimental results, the proposed method outperformed the existing methods when the error between the original data and imputation data was measured using MAE and RMSE.

Optimum Design of RC Frames Based on the Principle of Divid Parameters (변수분리의 원리를 이용한 RC구조물의 최적설계)

  • 정영식;정석준;김봉익
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1994.10a
    • /
    • pp.267-272
    • /
    • 1994
  • This work presents a method of optimum design for reinforced concrete building frames with rectangular cross sections. The optimization techniques used is based on the principle of divided parameters. The design variable parameters are divided into two groups, external and internal, and the optimization is also divided into external and internal procedure. This principle overcomes difficulties arising from the presence of two materials in one element, the property peculiar to reinforced concrete. Several search algorithms are tested to verify their accuracy for the external optimization. Among them pattern search algorithms has been found consistent. This work proposes a new method, modified pattern search, and a number of sample problems prove its accuracy and usefulness. Exhaustive search for all local minima in the design spaces for two sample problems has been carried out to understand the nature of the problem. The number of local minima identified is quite more than expected and it has become understood that the researcher's task in this field is to find a better local minimum if not global. The designs produced by the method preposed have been found better than those from other method, and they are in full accord with ACI Building Code Requirments(ACI 318-89).

  • PDF