• Title/Summary/Keyword: Local optimization

Search Result 928, Processing Time 0.036 seconds

A NOVEL FILLED FUNCTION METHOD FOR GLOBAL OPTIMIZATION

  • Lin, Youjiang;Yang, Yongjian;Zhang, Liansheng
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.6
    • /
    • pp.1253-1267
    • /
    • 2010
  • This paper considers the unconstrained global optimization with the revised filled function methods. The minimization sequence could leave from a local minimizer to a better minimizer of the objective function through minimizing an auxiliary function constructed at the local minimizer. Some promising numerical results are also included.

A New Approach to System Identification Using Hybrid Genetic Algorithm

  • Kim, Jong-Wook;Kim, Sang-Woo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.107.6-107
    • /
    • 2001
  • Genetic alogorithm(GA) is a well-known global optimization algorithm. However, as the searching bounds grow wider., performance of local optimization deteriorates. In this paper, we propose a hybrid algorithm which integrates the gradient algorithm and GA so as to reinforce the performance of local optimization. We apply this algorithm to the system identification of second order RLC circuit. Identification results show that the proposed algorithm gets the better and robust performance to find the exact values of RLC elements.

  • PDF

Local Solution of a Sequential Algorithm Using Orthogonal Arrays in a Discrete Design Space (이산설계공간에서 직교배열표를 이용한 순차적 알고리듬의 국부해)

  • Yi, Jeong-Wook;Park, Gyung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.9
    • /
    • pp.1399-1407
    • /
    • 2004
  • Structural optimization has been carried out in continuous design space or in discrete design space. Generally, available designs are discrete in design practice. However, the methods for discrete variables are extremely expensive in computational cost. An iterative optimization algorithm is proposed for design in a discrete space, which is called a sequential algorithm using orthogonal arrays (SOA). We demonstrate verifying the fact that a local optimum solution can be obtained from the process with this algorithm. The local optimum solution is defined in a discrete design space. Then the search space, which is a set of candidate values of each design variables formed by the neighborhood of a current design point, is defined. It is verified that a local optimum solution can be found by sequentially moving the search space. The SOA algorithm has been applied to problems such as truss type structures. Then it is confirmed that a local solution can be obtained by using the SOA algorithm

A Rule-Based System for VLSI Gate-Level Logic Optimization (VLSI 게이트 레벨 논리설계 최적화를 위한 Rule-Based 시스템)

  • Lee, Seong-Bong;Chong, Jong-Wha
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.1
    • /
    • pp.98-103
    • /
    • 1989
  • A new system for logic optimization at gate-level is proposed in this paper. Ths system is rule-based, i which the rules represent the local trnsformation replacing a portion of circuits with the simplified equivalent circuits. In this system, 'rule generalization' and 'local optimization' are proposed for effective pattern matching. Rule generalization is used to reduce the circuit-search for pattern matching, and local optimization, to exclude unnecessary circuit-search. In additionk, in order to reduce unnecessary trial of pattern matching, the matching order of circuit patern is included in the rule descriptions. The effectiveness of this system is shown by its application ot the circuits which are generated by a hardware compiler.

  • PDF

Neighbor Generation Strategies of Local Search for Permutation-based Combinatorial Optimization

  • Hwang, Junha
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.10
    • /
    • pp.27-35
    • /
    • 2021
  • Local search has been used to solve various combinatorial optimization problems. One of the most important factors in local search is the method of generating a neighbor solution. In this paper, we propose neighbor generation strategies of local search for permutation-based combinatorial optimization, and compare the performance of each strategies targeting the traveling salesman problem. In this paper, we propose a total of 10 neighbor generation strategies. Basically, we propose 4 new strategies such as Rotation in addition to the 4 strategies such as Swap which have been widely used in the past. In addition, there are Combined1 and Combined2, which are made by combining basic neighbor generation strategies. The experiment was performed by applying the basic local search, but changing only the neighbor generation strategy. As a result of the experiment, it was confirmed that the performance difference is large according to the neighbor generation strategy, and also confirmed that the performance of Combined2 is the best. In addition, it was confirmed that Combined2 shows better performance than the existing local search methods.

Improvement of Ant Colony Optimization Algorithm to Solve Traveling Salesman Problem (순회 판매원 문제 해결을 위한 개미집단 최적화 알고리즘 개선)

  • Jang, Juyoung;Kim, Minje;Lee, Jonghwan
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.3
    • /
    • pp.1-7
    • /
    • 2019
  • It is one of the known methods to obtain the optimal solution using the Ant Colony Optimization Algorithm for the Traveling Salesman Problem (TSP), which is a combination optimization problem. In this paper, we solve the TSP problem by proposing an improved new ant colony optimization algorithm that combines genetic algorithm mutations in existing ant colony optimization algorithms to solve TSP problems in many cities. The new ant colony optimization algorithm provides the opportunity to move easily fall on the issue of developing local optimum values of the existing ant colony optimization algorithm to global optimum value through a new path through mutation. The new path will update the pheromone through an ant colony optimization algorithm. The renewed new pheromone serves to derive the global optimal value from what could have fallen to the local optimal value. Experimental results show that the existing algorithms and the new algorithms are superior to those of existing algorithms in the search for optimum values of newly improved algorithms.

Study on Optimization for Scheduling of Local And Express Trains Considering the Application of High Performance Train (고성능 열차를 활용한 완급행 열차 운행 스케쥴 최적화 방안 연구)

  • Kim, Moosun;Kim, Jungtai;Ko, Kyeongjun
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.2
    • /
    • pp.234-242
    • /
    • 2016
  • In express operation plans for urban trains, it is effective for the reduction of the number of sidetracks to apply a high performance train that has improved acceleration/deceleration ability and a regular train to local and express trains, respectively. In this research, based on a plan to use a high performance train for a local train, an optimization methodology is suggested to reduce the number of sidetracks and the operation time of the local train simultaneously. The optimization solver applied in this research is a genetic algorithm; headway, location of sidetrack and waiting time at the sidetrack are considered as design variables in the optimization problem. Consequently, by applying this system to Seoul metro line no.7, the effect of the suggested methodology was verified by obtaining the proper optimum solution.

HS-PSO Hybrid Optimization Algorithm for HS Performance Improvement (HS 성능 향상을 위한 HS-PSO 하이브리드 최적화 알고리즘)

  • Tae-Bong Lee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.4
    • /
    • pp.203-209
    • /
    • 2023
  • Harmony search(HS) does not use the evaluation of individual harmony when referring to HM when constructing a new harmony, but particle swarm optimization(PSO), on the contrary, uses the evaluation value of individual particles and the evaluation value of the population to find a solution. However, in this study, we tried to improve the performance of the algorithm by finding and identifying similarities between HS and PSO and applying the particle improvement process of PSO to HS. To apply the PSO algorithm, the local best of individual particles and the global best of the swam are required. In this study, the process of HS improving the worst harmony in harmony memory(HM) was viewed as a process very similar to that of PSO. Therefore, the worst harmony of HM was regarded as the local best of a particle, and the best harmony was regarded as the global best of swam. In this way, the performance of the HS was improved by introducing the particle improvement process of the PSO into the HS harmony improvement process. The results of this study were confirmed by comparing examples of optimization values for various functions. As a result, it was found that the suggested HS-PSO was much better than the existing HS in terms of accuracy and consistency.

A Framework for Universal Cross Layer Networks

  • Khalid, Murad;Sankar, Ravi;Joo, Young-Hoon;Ra, In-Ho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.8 no.4
    • /
    • pp.239-247
    • /
    • 2008
  • In a resource-limited wireless communication environment, various approaches to meet the ever growing application requirements in an efficient and transparent manner, are being researched and developed. Amongst many approaches, cross layer technique is by far one of the significant contributions that has undoubtedly revolutionized the way conventional layered architecture is perceived. In this paper, we propose a Universal Cross Layer Framework based on vertical layer architecture. The primary contribution of this paper is the functional architecture of the vertical layer which is primarily responsible for cross layer interaction management and optimization. The second contribution is the use of optimization cycle that comprises awareness parameters collection, mapping, classification and the analysis phases. The third contribution of the paper is the decomposition of the parameters into local and global network perspective for opportunistic optimization. Finally, we have shown through simulations how parameters' variations can represent local and global views of the network and how we can set local and global thresholds to perform opportunistic optimization.

Design of Wheel Profile to Reduce Wear of Railway Wheel (곡선부에서 차륜 마모 저감을 위한 차륜답면 형상 설계)

  • Choi, Ha-Young;Lee, Dong-Hyong;Song, Chang-Yong;Lee, Jong-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.6
    • /
    • pp.607-612
    • /
    • 2012
  • The wear problem of wheel flange occurs at sharp curves of rail. This paper proposes a procedure for optimum design of a wheel profile wherein flange wear is reduced by improving an interaction between wheel and rail. Application of optimization method to design problem mainly depends on characteristics of design space. This paper compared local optimization method with global optimization according to sensitivity value of objective function for design variables to find out which optimization method is appropriable to minimize wear of wheel flange. Wheel profile is created by a piecewise cubic Hermite interpolating polynomial and dynamic performances are analyzed by a railway dynamic analysis program, VAMPIRE. From the optimization results, it is verified that the global optimization method such as genetic algorithm is more suitable to wheel profile optimization than the local optimization of SQP (Sequential Quadratic Programming) in case of considering the lack of empirical knowledge for initial design value.