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A NOVEL FILLED FUNCTION METHOD
FOR GLOBAL OPTIMIZATION

YOUJIANG LIN, YONGJIAN YANG, AND LIANSHENG ZHANG

ABSTRACT. This paper considers the unconstrained global optimization
with the revised filled function methods. The minimization sequence
could leave from a local minimizer to a better minimizer of the objective
function through minimizing an auxiliary function constructed at the lo-
cal minimizer. Some promising numerical results are also included.

1. Introduction

Consider the following unconstrained programming problem:
(1.1) min{ f(z) : € R"},

where f: R™ — R.

Many results devoted to global optimization are available in the literature.
See, for example [1]-[8]. In order to ensure the ability to escape from local
minimum, many global optimization algorithms would include in their consid-
eration a subproblem of transcending local optimality, namely: given a local
minimizer z*, find a better local minimizer, or showing that x* is a global min-
imizer upon termination. Among all the different types of global optimization
algorithms available in the literature, one popular approach is called the aux-
iliary function approach. In this approach, the resolution to the subproblem
under concerned is to replace the original cost function with an auxiliary func-
tion. This replacement procedure, in principle, should ensure any local search
applied to the auxiliary function starting from z*, would lead to a lower mini-
mum of the original cost function, if there exists one. Thus, global minimizer
can be obtained just by implementing local search methods to the auxiliary
function and the original function. However, it is rather difficult to construct
such an auxiliary function.
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Filled function method is a typical auxiliary function method. The primary
filled function was proposed by Ge [2]. The definition of the filled function is
as follows:

Definition 1.1. Let 2} be a current minimizer of f(x). A function P(z) is
called a filled function of f(x) at «} if P(x) has the following properties:

(1) z7 is a maximizer of P(x) and the whole basin B of f(z) at 27 becomes
a part of a hill of P(z);

(2) P(z) has no minimizers or saddle points in any higher basin of f(x)
than B7;

(3) if f(z) has a lower basin than B, then there is a point z in such a
basin that minimizes P(z) on the line through z and x7}.

For the definitions of basin and hill, refer to [2].
The filled function given at x3 in [2] has the following form:

1 [|= —x*{llz)
1.2 Px,x7,7r,p) = exp | — ,
( ) ( 1 p) r 4+ f(f) p( ,02

where the parameters r and p need to be chosen appropriately.

However, the filled function algorithm described in [2] still has some unex-
pected features. Such as: The efficiency of the filled function algorithm strongly
depend on two parameters r and p; When the domain is large or p is small,
the factor eXp(M) will be approximately zero, This smoothing increases
with this factor, the filled function (1.2) will become very flat. This makes the
efficiency of the filled function algorithm decrease. Although some other filled
functions were proposed later, all of them are still not satisfactory for global
optimization due to the above features.

In paper [8], a new definition of the filled function is given as following:

Definition 1.2. P(z,x7) is called a filled function of f(x) at a local minimizer
z7 if P(x,z7) has the following properties:

(1) z7 is a local maximizer of P(z,x7);

(2) P(z,z7) has no stationary point in the region

Si=Ax: f(a) = fz1),x € Q\ {a7}}.
(3) If 27 is not a global minimizer of f(x), then P(z,z7) does have a
minimizer in the region

So =A{z: fz) < f(z1),2 € Q}.

The new filled function algorithm overcomes the disadvantages mentioned
above in a certain extent.

In this paper, we construct a novel filled function satisfying the new defini-
tion. Numerical results indicate the filled function is very efficient and reliable.

The paper is organized as follows: In Section 2, we state the problem under
some assumptions and give a novel filled function which has two adjustable
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parameters is proposed and its properties are investigated. In Section 3, we
give a new filled function algorithm. In Section 4, test functions and numer-
ical experiments are reported. Finally, in Section 5, we give some concluding
remarks.

2. Some assumptions and a new filled function
Consider the following unconstrained programming problem:
min f(x) such that z € R".
Throughout this paper we make the following assumptions:

Assumpution 1. f(z) is Lipschitz continuous on R", i.e., there exists a con-
stant L > 0 such that || f(z) — f(y)|| < L||z — y|| holds for all 2,y € R™.

Assumpution 2. f(z) is coercive, i.e., f(z) — +00, as ||z|| — +oc.

Notice that Assumption 2 implies the existence of a robust compact set
) C R™ whose interior contains all minimizers of f(x). We assume that the
value of f(x) for x on the boundary of Q is greater than the value of f(x)
for any x inside 2. Then the original problem is equivalent to the following
problem:

(P) min f(x) such that x € Q.
Assumpution 3. f(z) has only a finite number of minimums in .

Let L(P) stand for the set of local minimizers of f(z) and the function

2
arctan (—%4 ) +Z, ift#0
2.1 0q(t) = ( t2) 2 ’
21) ) {07 7

is given. It is easy to prove that ¢4(t) is a continuously differentiable function.
The new filled function given at z] has the following form:

e U@~ 1)+ 1),

2.2 F(z,z*,q,r) = —————
(2:2) (@0 0) =

where ¢ > 0 and r satisfies

0<r< max (f(z7)— f(z%)).
z*, a7 €L(P)
Fe)<f@))
The following theorems show that F(z,z*,q,r) is a filled function satisfying
Definition 1.2.

Theorem 2.1. Suppose that f(x) holds Assumption 1. Further suppose that
x¥ is a local minimizer of f(x). For any r > 0, when ¢ > 0 is satisfactorily
small, x5 is a local maximizer of F(x,x7,q,T).
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Proof. Since x7 is a local minimizer of f(x), there exists a neighborhood N(z7¥,0)
of 7 with § > 0 such that f(z) > f(a*) for all z € N(«7,5). Then,

F(x,x”{, Q7T) - F(Jflka x;:QaT)

= ; <arctan <— q2 ) + W)
g+ =] (f(z) = f(z7) +7)? 2
2
— é (arctan <_?~2> + g)
_ 1 . 'S Lot ¢
“mwm—xma“a“CYﬂw—f@n+wv>‘q“C”(‘ﬂ)
g(q+[lz — 7)) 2

—q+“;_ﬂnX(MWm<£)‘““”“<umw—i%>+m¥n
qa

. ! < w( ¢ (2> ™

xr— arctan _ =

@ Te== i )73
1

REI ATl
) (q ) <7€{2 C (fl@) _J?(xf)+r)2> + [lz — 27| (arctanl - g))

(when z >y, arctan(z) — arctan(y) < 2 —y; and let ¢* < r?)
1
q % (q+ [lz — 271[])
(f(z) = f(a7)) x (f(2) — f(a]) + 2r) o
(o e - el
Since any © € N(z},d) have f(x) > f(xf), thus f(x) — f(z7) +r > 71 > 0,
therefore

(f(z) — f(21)) x (f(z) — f(a1) +2r)
r2 x (f(z) — f(a1) +7)?
_ (f@) = f@@1)* +2r(f(=) — f(21))
r? x (f(z) = f(a1) +7)?
_ (f(x) = f(a1))? L 2U@) = f=1)
r2x (f(z) = f(21) + )  r?x (f(z) = f(a]) +7)?
< f(z) — f(z]) 4 2r(f(@) — fad))
2 x (f(z) = f(z3)+7) r4
Llz — z3 2L||x — z]
<4 - il 2L - |
L]

r3
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Then, we have

F(xaxiqa?ﬂ) *F(ZET,IT,(],T)

< 1 <q3><3L||III—£Uik||_”x_x*”’f(')
qx (q+ |z —=1l]) ré 4

< ” q — ||z — 27| =
qx (q+ ||z — 2] r Ha

(because ¢* < r?)

lz — 27| ( 3L 7r>
= ” qxX — ——
g% (qg+ |z —27]) T4

wr )

Above of all, when 0 < ¢ < min{r, {f=} and z € N(z7,0), = # z], we have,

<
<0 (whengq< 19

F(.Z‘,LL'T,Q,’I") - F(SL’T,ZL‘;Q,T‘) < 07
x7 is a local maximizer of F'(x,x7,q,r). O
Theorem 2.2. Suppose that f(x) is continuously differentiable. If x7 is a local
minimizer of f(x), then the function F(x,x%,q,r) has no stationary points in

the region S1 = {x : f(z) > f(z}),z € Q/{z5}} whenr > 0 and ¢ > 0 is
satisfactorily small.

Proof. Let x € Sy, i.e., f(z) > f(z]) and = # =, and let L = sup{||V f(z)| :
x € Q}. We have

x—z*
VF * T &
(xvxla(LT) ||$ _ .T*H

- - = (e (e ee) +5)
2¢?V f ()T (z — %)

Tl —aiDa + e - 2D (@) — Fai) + )
1

Y ——
(f(x)—f(z})+r)?
< 1 ( ¢ ( q2> n 7T> n 2L q>
< — ————— | arctan | —=; — _
(q+ [lz —27])? r? 2 q+ [z —aif| r?

1 q2 U q
< - tan | —— | + = 2L—.
—+ maxy, xr — I* 2 arcta ’I“2 2 ’I"3
q € 1

Let M = max;ex ||z — 23], and 0 < ¢ < min{1, m} We have

X

r—x3 1 q T 1
VF 1 T 1 - ( t (——) —) —_—.
(z,z7,q,7) ot < ESTIE arctan | — 5 + 5 + SAESYIE
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Thus, when 0 < ¢ < min{m,r2 tan(“T_l), 1}, we have

T —x3
VF(z,zt,qr) T — <.
( 9 laQ7 ) HQC—OUTH
It implies that the function F(x,z},q,r) has no stationary points in the
region S; = {x : f(z) > f(a}),z € Q\ {z7}} when r > 0 and ¢ > 0 is
satisfactorily small. O

Theorem 2.3. If 27 € L(P) and it is not a global minimizer of f(x) in ,
then there exists a minimizer x5 of F(z,x%,q,7) in the region So = {z : f(z) <
f(z1),z € Q}.

Proof. Since f(x) is continuous and x7 is not its global minimizer, there exists
a point x}, such that

f(a}) = fla1) +7 =0,
namely, F(z7,z},q,7) = 0. On the other hand F(z,x%,q,r) > 0 from the form
of the filled function. Therefore, F(x,z%,q,7) > F(z},2%,q,r). Thus 7 is a
minimizer of F(x,z7,q,7). O

Theorem 2.4. Suppose that Assumption 1 is satisfied. If x1,20 € Q and
satisfy the following conditions:

(1) f(z1) = f(z]) and f(z2) = f(2]),
(2) [lee = 23] > flzg — 7.
Then, when r > 0 and q is positive and satisfactorily small, F(x1,2%,q,1) >
F(an‘TTvq?T)'
Proof. Consider the following two cases:
(1) If f(z7) < f(x2) < f(x1), then it is obvious that the result follows.
(2) If f(xT) < f(‘rl) < f(IZ)v we will show F(‘TlaxikalLT) > F(I27I>‘1(7Qar)
also holds.
When f(27) < f(21) < f(x2), we have
F(.TQ,J?T,Q,’I") - F(‘rlvx’{aQJ“)
= ; <arctan <— q2 > + W)
q+ |lze — 21| (f(z2) = f(z]) +7)? ) 2
- 71 (arctan (— q2 ) + W)
q+ [z — 21| (f(@1) = flz)) +7)? ) 2

= _71 arctan ( q2 )
g+ e — i (f(z2) = f(27) +7)?

1 q2
T e — g ((f(afl) TR 7«)2)
oo — i) = o — a5l 7«
(@ 22— 21D+ lon — 711 2
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and
w2 =il = fle — 2l 7w

lim (F(xg,x*,q,r)—F(a:l,x*,q,r)): * *
7—0 ' ' |z2 — zi[[llz1 — 27 2

Then, there must exist a constant go > 0 such that
F(xy1,23,q,7) > F(xa,27,q,7)
while ¢ < go, and ¢ is not related to the values of f(x) at x; and .
Theorem 2.5. If 21, x5 € Q and satisfy the following conditions:
(1) [lzg — 23] > [lzy — 2],
(2) f(z1) = f(2]) > f(22) and f(z2) — f(z]) +7 > 0.

Then, we have F(xo,x7,q,7) < F(x1,27,q,1).

Proof. By Conditions 1 and 2, we have
1 1
* < *
g+ e =2yl g+ (e — 7]l

and
0< fla2) = f(@1) + 7 < f(z1) — fla]) + 7
Hence
F(xo,x7,q,7) < F(x1,27,4,1).

1259

O

Now we make some remarks. First, in the phase of minimizing the new filled
function, Theorems 2.4 and 2.5 guarantee that the present local minimizer x7
of the objective function is escaped and the minimum of the new filled function
will be always achieved at a point where the objective function value is not
larger than the objective function value of the current minimum. Second, the
parameters ¢ and r are easier to be appropriately chosen than those of the
original filled function (1.2). When the parameter ¢ is small and f(z) > f(z7),

the factor arctan (m) + 5 will be approximately 7, therefore, the
1

new filled function does not become flat. In the next section, a new filled

function algorithm is given, it has a simple termination criteria.

3. The filled function algorithm

In the above section, we discussed some properties of the filled function.

Now, we present an algorithm in the following:
Algorithm
1. Initial Step

Choose r = 1, and 0 < ryp < 1 as the tolerance parameters for terminating

the minimization process of problem (P).
Choose 0 < gp < 1 and M > 0.

Choose direction e;, i = 1,2,..., kg with integer ky > 2n, where n is the

number of variable.
Choose an initial point 2§ € Q.
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Let £k =1.
2. Main Step

19. Obtain a local minimizer of prime problem (P) by implementing a local
downhill search procedure staring from the mg. Let z7 be the local minimizer
obtained. Let 1 =1,r=1,¢=1rIn2.

20, If i < kg, then goto 5°, otherwise goto 3°.

30, If r < 1o, then terminate the iteration, the z} is the global minimizer of
problem (P), otherwise, goto 4°.

4% If ¢ < qo, then let » = r/2, ¢ = rIn2, i = 1, goto 5°, otherwise, let
q=q/10, i =1, goto 5°.

50. 2% = z} +oe; (where o is a very small positive number), if f(zZ}) < f(z})
then let k =k + 1, 2 = 7} and goto 1°; otherwise, goto 6°.

69. Let

1

e P @) — fE+n)

F(z, 0}, q,7) =
and yo = Z;,. Turn to inner loop.
3. Inner Loop
1°. Let m = 0.
2% yi1 = ©(ym), where ¢ is an iteration function. It denotes a local
downhill search method for the following problem:

min F'(z,x},q,7) such that « € Q.

Such as F-R method, BFGS method, etc.

30, If Yyt ¢ Q, then let i =i + 1, goto main step 2°, otherwise goto 4°.

4% If f(yms1) < f(x}), then let k = k+ 1, 29 = y,,,4+1 and goto main step
19, otherwise let m = m + 1 and goto 2°.

The idea and mechanism of algorithm are explained as follows:

There are two phrases in the algorithm. One is that of minimizing the
original function f, the other is that of minimizing the new filled function
F(xz,x7%,q,r) in the inner loop. We let » = 1 and ¢ = rIn 2 in the initialization,
afterwards, r and ¢ are gradually reduced via the two-phase cycle until they
are less than sufficiently small positive scales. If the parameters r and ¢ are
sufficiently small, we cannot find the point = with f(x) < f(z7) yet, then we
believe that there does not exist a better local minimizer of f(z). The algorithm
is terminated.

4. Numerical examples

In this section, we apply the filled algorithm to several test examples. The
proposed algorithm is programmed in Fortran 95 for working on the windows
XP system with Intel cl.7G CPU and 256M RAM. Numerical results prove that
the method is efficient.

The computational results are summarized in tables for each example prob-
lem. The symbols used in the tables are given as follows:
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k: The iteration number in finding the k-th local minimizer;
29: The starting point in the k-th iteration;
q,7: The parameters used for finding the k-th local minimizer;
27+ The k-th local minimizer;

f(z%): The function value of the k-th local minimizer.

Example 4.1 (Two-dimensional (n = 2) function in [9]).
min f(x) = [1 — 2zo + csin(4rws) — 1] + [x2 — 0.5sin(2721))?
such that 0 < z; <10,—-10 < x5 <0,

where ¢ = 0.2,0.5,0.05.

The proposed filled function approach succeeds in identifying the global min-
imum solutions: f(x*) = 0 for all ¢. The computational results are summarized
in Tables 1-3, for ¢ = 0.2, 0.5, 0.05, respectively. An illustration with ¢ = 0.5

is given in Fig.1.

Fig. 1. Two-dimensional function with c=0.5 .
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Example 4.2 (Six-hump back camel (n = 2) function in [2]).

1
min f(z) = 422 — 2127 + gax? — 2129 — 423 + 4

such that —3 <z <3,-3 <zy < 3.

Three initial points * = (—2,1), (2,—1), and (=2, —1) are used. The pro-
posed filled function approach succeeds in identifying the global minimum so-
lutions: a* = (0.0898420131,0.712656403) or (—0.0898420131, —0.712656403),
where f(z*) = —1.03162845349. The computational results are summarized in
Table 4-6, respectively. An illustration is given in Fig.2.
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Fig. 2. Six-hump back camel function.
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TABLE 4.1. numerical results for example 4.1 with ¢ = 0.2

k Tp local minimizer fxy) (q,7)
300000 2 ss08 2.50700 -
(AR e (o)
2 ( Alioses Bt vasess (Yoon00 )
3 ( Tsarsno e om0 )
s (20w ) ( 07amme ) msersexio7(Gnfll
s (EI) () sascioe (D

TABLE 4.2. Numerical results for Example 4.1 with ¢ = 0.5

k Ty local minimizer @} fx}) (q, 1)
D000 ) ( Sooesrms ) Osirass -
(ST (s o (S
NE e SETTNE )

Example 4.3 (The Rastrigin (n = 2) function in [10]).
min f(z) = 23 + 23 — cos(18z;) — cos(18x3)
such that —1 <2, <1,-1 <25 <1.
The initial points © = (1,1) are used. The proposed filled function ap-
proach succeeds in identifying the global minimum solutions z* = (0.0, 0.0),

where f(z*) = —2. The computational results are summarized in Table 7,
respectively. An illustration is given in Fig.3.
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Fig. 3. The Rastrigin function.

TABLE 4.3. Numerical results for Example 4.1 with ¢ = 0.05

k e local minimizer z:, f(:vz) (q,7)

( ooooon ) Zararss 12,1010 -
(e Y (e ) (Sl
co( e ) (I e (opm
c(nER) (nEn) e (o
c(sEE) () e (o
oo Em ) (R e (S
S N G B (L
N Qe 3001 oeisiss  ( 0108’33537 )
O (e 0731 0.102163 0250000
o ((timsa ) ( owvae ) osmesx07r ((GHET

TABLE 4.4. Numerical results for Example 4.2 with initial
point (—2,1)

k Ty local minimizer 7 flz}) (q, )
=3.00000 —1.60710 -
1.00000 ( 0.568653 ) 210425 - )
~1.00792 0.0898409 0.693147

! 0.597201 ( 0.712656 ) —1.03163 ( 1.00000 )

Example 4.4 (n-dimensional Sine-square (n = 2,3,5,7,10) function in [2]).

min f(z) = = [10sin® (1) + g(x) + (2, — 1))
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TABLE 4.5. Numerical results for Example 4.2 with initial

point (2, —1)

k Ty local minimizer x} flz}) (q, 1)
( 2000 ) ( —Gogetss ) 21042 -

! 0.301075 ( 0.796083 ) —0.215464 00000

o (omm ) (LEEY e (e

TABLE 4.6. Numerical results for Example 4.2 with initial

point (—2,—1)

k Ty local minimizer x} f(z7) (q, 1)
=5.00000 —1.70361 -
—1.00000 ( —0.796083 ) —0.215464 -
—0.604065 —0.0898410 0.693147

! ( —0.774673) ( —0.712656 ) —1.03163 ( 1.00000 )

TABLE 4.7. Numerical results for Example 4.3

k Ty local minimizer 7 flz}) (q, 1)

T O D T

Co(emm) (o) e (OmaE)

2 ( 0785064 ) ( _2'6(?%39382410_8 ) —1.51560 ( 100000 )
4 -8

3 ( e psat01 ) < 3 5o162 % 10— ) —2:00000 ( ‘100000 )

Fig. 4. n—dimensional Sine-square (n=2) function.

200 ~
150
P
=z 100
2.3 SN
TTARORS
; RN RS
50 Ui U SN S
s s 5 s
| IN) Wl S, RIS
S S 0
N N SRR
i “"41'4';l:,'ll,’llllll%;'«:?o'o‘&:k NN T
RIS, s
0 - Y KRXR
_2 R

x2

x1

such that —10<2; <10, ¢t =1,2,...,n,
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TABLE 4.8. Numerical results for Example 4.4 with n = 2

k Ty local minimizer zj f(zf) (q,7)
STy ) e .
1 T omia a69742 49.9958 60000
s (Y (S wen (GEN
BEIRE T TREG

TABLE 4.9. Numerical results for Example 4.4 with n = 3

k Tp local minimizer xz f(;clt) (q, 1)
—3.00000 —2.95942 -

0 —3.00000 —2.99741 50.0751 ( - )
—3.00000 —2.99747
—2.15942 —1.96967

1 —2.99652 —92.99541 42.8104 ( 0.5)006090301047 )
—2.99747 —2.99746 .
—1.16967 —0.979675 )

2 —2.99529 —2.98967 37.6032 ( 0-;)006090301047 )
—2.99746 —2.99746 .
—0.0796835 0.0117214

3 —2.98832 —92.95844 34.3635 ( 0.;)006090301047 )
—2.99746 —2.99742 -

0.911721 1.00000

4 —2.95815 1.00000 6.00157 x 10— 12 ( 0.5)006090301047 )

—2.99742 1.00000 .

TABLE 4.10. Numerical results for Example 4.4 with n =5

k T, local minimizer @} fx}) (q,7)
—1.00000 —0.979833
—1.00000 —0.994829

0 —1.00000 —0.994907 12.5155 ( B )
—1.00000 —0.994907 -
—1.00000 —0.994920
—0.0798346 —0.0104528
—0.994270 —0.979407

1 —0.994907 —0.994827 10.6301 ( 0'2006090301047 )
—0.994907 —0.994907 :
—0.994920 —0.994920
0.910453 1.00000
—0.979208 1.00000

2 —0.994827 1.00000 3.67777 x 10711 ( O‘?006090301047 )
—0.994907 1.00000 :
—0.994920 1.00000

where g(z) = S0 (2 — 1)2(1 4 10sin® (m2411))).

The function is tested for n = 2,3,5,7,10. The global minimum solution is
uniformly expressed as: z* = (1.0000, 1.0000, . ..,1.0000) and f(z*) = 0.0000.
The computational results are summarized in Tables 8-12, respectively. An

illustration with n = 2 is given in Fig.4.

5. Conclusions

Based on the new definition of the filled function, we give a novel filled func-
tion which satisfying the definition and develop an algorithm for unconstrained
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TABLE 4.11. Numerical results for Example 4.4 with n =7

k T local minimizer zy f(zg) (q,1)
2.00000 1.98986
2.00000 1.98965
2.00000 1.98965

0 2.00000 1.98965 3.10951 ( B )
2.00000 1.98965 -
2.00000 1.98965
2.00000 1.98975
1.08755 1.00000
2.04409 1.00000
1.99299 1.00000

1 1.98966 1.00000 5.44137 x 10711 ( 01‘60903010407 )
1.98965 1.00000 :
1.98965 1.00000
1.98975 1.00000

TABLE 4.12. Numerical results for Example 4.4 with n = 10

k T local minimizer x} fzy) (q,7)

6.00000 5.94897

6.00000 5.99793

6.00000 5.99797

6.00000 5.99797

6.00000 5.99797 —
0 6.00000 5.99797 78.4316 ( - )

6.00000 5.99797

6.00000 5.99797

6.00000 5.99797

6.00000 5.99797

3.26286 2.97968

5.09981 4.98967

5.99802 5.99682

5.99797 5.99797

5.99797 5.99797 0.693147
1 5.99797 5.99797 69.0622 ( 1.00000 )

5.99797 5.99797

5.99797 5.99797

5.99797 5.99797

5.99797 5.99797

1.88528 1.98828

5.08820 4.95842

5.99763 5.99677

5.99797 5.99797

5.99797 5.99797 0.693147
2 5.99797 5.99797 68.0902 ( 1.00000 )

5.99797 5.99797

5.99797 5.99797

5.99797 5.99797

5.99797 5.99797

0.981955 1.00000

5.08927 1.00000

5.99696 1.00000

6.00201 1.00000

5.99635 1.00000 —11 0.693147
3 5.99692 1.00000 7.45707 x 10 ( 1.00000 )

5.99687 1.00000

5.99689 1.00000

5.99698 1.00000

5.99617 1.00000

global optimization. The computational results show that this filled function
is quite efficient and reliable.
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