• 제목/요약/키워드: Local optimization

검색결과 928건 처리시간 0.034초

선박용 체크밸브의 최적설계에 관한 연구 (A Study on the Optimization Design of Check Valve for Marine Use)

  • 이춘태
    • 동력기계공학회지
    • /
    • 제21권6호
    • /
    • pp.56-61
    • /
    • 2017
  • The check valves are mechanical valves that permit fluids to flow in only one direction, preventing flow from reversing. It is classified as one way directional valves. There are various types of check valves that used in a marine application. A lift type check valve uses the disc to open and close the passage of fluid. The disc lift up from seat as pressure below the disc increases, while drop in pressure on the inlet side or a build up of pressure on the outlet side causes the valve to close. An important concept in check valves is the cracking pressure which is the minimum upstream pressure at which the valve will operate. On the other hand, optimization is a process of finding the best set of parameters to reach a goal while not violating certain constraints. The AMESim software provides NLPQL(Nonlinear Programming by Quadratic Lagrangian) and genetic algorithm(GA) for optimization. NLPQL is the implementation of a SQP(sequential quadratic programming) algorithm. SQP is a standard method, based on the use of a gradient of objective functions and constraints to solve a non-linear optimization problem. A characteristic of the NLPQL is that it stops as soon as it finds a local minimum. Thus, the simulation results may be highly dependent on the starting point which user give to the algorithm. In this paper, we carried out optimization design of the check valve with NLPQL algorithm.

Holistic Joint Optimal Cooperative Spectrum Sensing and Transmission Based on Cooperative Communication in Cognitive Radio

  • Zhong, Weizhi;Chen, Kunqi;Liu, Xin;Zhou, Jianjiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권3호
    • /
    • pp.1301-1318
    • /
    • 2017
  • In order to utilize the licensed channel of cognitive radio (CR) when the primary user (PU) is detected busy, a benefit-exchange access mode based on cooperative communication is proposed to allow secondary user (SU) to access the busy channel through giving assistance to PU's communication in exchange for some transmission bandwidth. A holistic joint optimization problem is formulated to maximize the total throughput of CR system through jointly optimizing the parameters of cooperative spectrum sensing (CSS), including the local sensing time, the pre-configured sensing decision threshold, the forward power of cooperative communication, and the bandwidth and transmission power allocated to SUs in benefit-exchange access mode and traditional access mode, respectively. To solve this complex problem, a combination of bi-level optimization, interior-point optimization and exhaustive optimization is proposed. Simulation results show that, compared with the tradition throughput maximizing model (TTMM), the proposed holistic joint optimization model (HJOM) can make use of the channel effectively even if PU is busy, and the total throughput of CR obtains a considerable improvement by HJOM.

An integrated particle swarm optimizer for optimization of truss structures with discrete variables

  • Mortazavi, Ali;Togan, Vedat;Nuhoglu, Ayhan
    • Structural Engineering and Mechanics
    • /
    • 제61권3호
    • /
    • pp.359-370
    • /
    • 2017
  • This study presents a particle swarm optimization algorithm integrated with weighted particle concept and improved fly-back technique. The rationale behind this integration is to utilize the affirmative properties of these new terms to improve the search capability of the standard particle swarm optimizer. Improved fly-back technique introduced in this study can be a proper alternative for widely used penalty functions to handle existing constraints. This technique emphasizes the role of the weighted particle on escaping from trapping into local optimum(s) by utilizing a recursive procedure. On the other hand, it guaranties the feasibility of the final solution by rejecting infeasible solutions throughout the optimization process. Additionally, in contrast with penalty method, the improved fly-back technique does not contain any adjustable terms, thus it does not inflict any extra ad hoc parameters to the main optimizer algorithm. The improved fly-back approach, as independent unit, can easily be integrated with other optimizers to handle the constraints. Consequently, to evaluate the performance of the proposed method on solving the truss weight minimization problems with discrete variables, several benchmark examples taken from the technical literature are examined using the presented method. The results obtained are comparatively reported through proper graphs and tables. Based on the results acquired in this study, it can be stated that the proposed method (integrated particle swarm optimizer, iPSO) is competitive with other metaheuristic algorithms in solving this class of truss optimization problems.

호몰로지 설계를 이용한 원자로 핵연료봉 지지격자 스프링의 최적설계 (Optimization of a Nuclear Fuel Spacer Grid Spring Using Homology)

  • 이재준;송기남;박경진
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.828-835
    • /
    • 2006
  • Spacer grid springs support the fuel rods in a nuclear fuel system. The spacer grid is a part of a fuel assembly. Since a spring has repeated contacts with the fuel rod, fretting wear occurs on the surface of the spring. Design is usually performed to reduce the wear. The conceptual design process for the spring is defined by using the Independence of axiomatic design and the design is carried out based on the direction that the design matrix indicates. For detailed design an optimization problem is formulated. In optimization, homologous design is employed to reduce fretting wear. The deformation of a structure is called homologous if a given geometrical relationship holds for a given number of structural points before, during, and after the deformation. In this case, the deformed shape of the spring should be the same as that of the fuel rod. 1bis condition is transformed to a function and considered as a constraint in the optimization process. The objective function is minimizing the maximum stress to allow a local plastic deformation. Optimization results show that the contact occurs in a wide range. Also, the results are verified by nonlinear finite element analysis.

  • PDF

Elite-initial population for efficient topology optimization using multi-objective genetic algorithms

  • Shin, Hyunjin;Todoroki, Akira;Hirano, Yoshiyasu
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제14권4호
    • /
    • pp.324-333
    • /
    • 2013
  • The purpose of this paper is to improve the efficiency of multi-objective topology optimization using a genetic algorithm (GA) with bar-system representation. We proposed a new GA using an elite initial population obtained from a Solid Isotropic Material with Penalization (SIMP) using a weighted sum method. SIMP with a weighted sum method is one of the most established methods using sensitivity analysis. Although the implementation of the SIMP method is straightforward and computationally effective, it may be difficult to find a complete Pareto-optimal set in a multi-objective optimization problem. In this study, to build a more convergent and diverse global Pareto-optimal set and reduce the GA computational cost, some individuals, with similar topology to the local optimum solution obtained from the SIMP using the weighted sum method, were introduced for the initial population of the GA. The proposed method was applied to a structural topology optimization example and the results of the proposed method were compared with those of the traditional method using standard random initialization for the initial population of the GA.

전역구조함수를 사용한 광각 2군 줌 렌즈의 설계 (Design of Two-group Zoom Lens System with Wide Angle of View Using Global Structure Function)

  • 권혁준;임천석
    • 한국광학회지
    • /
    • 제20권6호
    • /
    • pp.319-327
    • /
    • 2009
  • 본 논문에서는 다음과 같은 관점의 광각 2군 줌 렌즈 설계를 소개한다. 먼저전역최적화의 개념을 기초설계단계에서 도입하고, 이를 통해 현대의 수많은 데이터들을 체계적으로 계통화하고 단순화할 수 있는 설계방안을 제안한다. 구체적인 방안으로 전역설 계를 위해 전역구조함수라는 새로운 개념의 함수를 도입하였고 단순화시켰으며, 나아가 약간의 대수적인 혹은 수치적인 계산을 통해 전역 해 영역을 구하였다. 전역 해 영역은 전역최적화에 대응되는 개념이고 상용화된 설계프로그램들 보다 더 체계적이고 통찰적인 설계방향을 제시한다.

순차적 선형화 기법과 유전자 알고리즘을 접속한 하이브리드형 최적화 알고리즘 (Hybrid Optimization Algorithm based on the Interface of a Sequential Linear Approximation Method and a Genetic Algorithm)

  • 이경호;이규열
    • 대한조선학회논문집
    • /
    • 제34권1호
    • /
    • pp.93-101
    • /
    • 1997
  • 본 연구에서는 전통적인 비선형 최적화 기법의 문제점을 극복하기 위하여 유전자알고리즘과 지식베이스의 통합을 통한 새로운 개념의 최적화 기법을 개발하였다. 여기에서는 제한조건이 있는 비선형 최적화 문제를 해결하기 위해 사용되는 전통적인 순차적 선형화 방법과 새로운 유전자 알고리즘의 장단점을 서로 보완한 하이브리드형 최적화 기법을 개발하였다. 여기에 지식베이스를 통한 최적화 지원 기법 및 최적화 모델의 자동생성 모듈을 개발하여 최적화 모텔의 성능을 한층 개선할 수 있었다. 개발된 최적화 기법의 검증을 위하여 수학적 비선형 모델을 이용한 여러가지 기법의 비교 검토를 수행하였다.

  • PDF

Minimization of a Cogging Torque for an Interior Permanent Magnet Synchronous Machine using a Novel Hybrid Optimization Algorithm

  • Kim, Il-Woo;Woo, Dong-Kyun;Lim, Dong-Kuk;Jung, Sang-Yong;Lee, Cheol-Gyun;Ro, Jong-Suk;Jung, Hyun-Kyo
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권3호
    • /
    • pp.859-865
    • /
    • 2014
  • Optimization of an electric machine is mainly a nonlinear multi-modal problem. For the optimization of the multi-modal problem, many function calls are required with much consumption of time. To address this problem, this paper proposes a novel hybrid algorithm in which function calls are less than conventional methods. Specifically, the proposed method uses the kriging metamodel and the fill-blank technique to find an approximated solution in a whole problem region. To increase the convergence speed in local peaks, a parallel gradient assisted simplex method is proposed and combined with the kriging meta-model. The correctness and usefulness of the proposed hybrid algorithm is verified through a mathematical test function and applied into the practical optimization as the cogging torque minimization for an interior permanent magnet synchronous machine.

Moth-Flame Optimization-Based Maximum Power Point Tracking for Photovoltaic Systems Under Partial Shading Conditions

  • Shi, Ji-Ying;Zhang, Deng-Yu;Xue, Fei;Li, Ya-Jing;Qiao, Wen;Yang, Wen-Jing;Xu, Yi-Ming;Yang, Ting
    • Journal of Power Electronics
    • /
    • 제19권5호
    • /
    • pp.1248-1258
    • /
    • 2019
  • This paper presents a moth-flame optimization (MFO)-based maximum power point tracking (MPPT) method for photovoltaic (PV) systems. The MFO algorithm is a new optimization method that exhibits satisfactory performance in terms of exploration, exploitation, local optima avoidance, and convergence. Therefore, the MFO algorithm is quite suitable for solving multiple peaks of PV systems under partial shading conditions (PSCs). The proposed MFO-MPPT is compared with four MPPT algorithms, namely the perturb and observe (P&O)-MPPT, incremental conductance (INC)-MPPT, particle swarm optimization (PSO)-MPPT and whale optimization algorithm (WOA)-MPPT. Simulation and experiment results demonstrate that the proposed algorithm can extract the global maximum power point (MPP) with greater tracking speed and accuracy under various conditions.

복합 유전자 알고리즘에서의 국부 탐색을 위한 셀룰러 학습 전략 (A Cellular Learning Strategy for Local Search in Hybrid Genetic Algorithms)

  • 고명숙;길준민
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제28권9호
    • /
    • pp.669-680
    • /
    • 2001
  • 유전자 알고리즘(GA:Genetic Algorithm)은 최적화 문제를 풀기 위해 생물학적 진화(evolution) 과정을 모방한 최적화 알고리즘이다. 유전자 알고리즘은 복잡한 상태 공간에서 최적 해를 찾기 위해 전통적인 최적화 기법과는 달리 유향적 임의 탐색을 행한다. 학습에 해당하는 국부 탐색(local search)을 유전적 알고리즘은 exploration 탐색과 exploitation 탐색의 균형을 유지시켜 줄 수 있는 한 방법이다. 모집단 내의 각 개체가 진화 과정 중에 학습한 유전적 특질들은 그 다음 세대에서 되물림 되며 이러한 학습(learning) 과정을 유전자 알고리즘과 결합시킴으로써 탐색 속도의 향상을 기대할 수 있다. 이 논문에서는 함수 최적화를 위해 속도를 개선한 셀룰러 학습을 기반으로 하는 유전자 알고리즘을 제안한다. 제안하는 셀룰러 학습 전략은 셀룰러 오토마타의 주기성과 수렴성을 기반으로 하며, 유기체가 그 개체의 생명 주기의 한 세대에서 얻게되는 지식과 경험들을 자손에게 전달한다는 이론을 바탕으로 한다. 제안한 셀룰러 학습 전략의 효율을 기존의 복합 유전자 알고리즘에서의 라마키안 진화 및 볼드윈 효과와 비교하였다. 다양한 테스트 베드 함수에 대한 실험을 통하여 셀룰러 학습에 의한 개체의 국부적 향상이 전체적인 성능 향상에 기여함을 알 수 있었고 제안한 학습 전략이 기존의 방법보다 더 빨리 전역 최적 해를 찾을 수 있음을 증명하였다.

  • PDF