• Title/Summary/Keyword: Local obstacle avoidance method

Search Result 50, Processing Time 0.028 seconds

High-level Autonomous Navigation Technique of AUV using Fuzzy Relational Products (퍼지관계곱을 이용한 수중운동체의 고수준 자율항행기법)

  • Lee, Young-Il;Kim, Yong-Gi
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.1_2
    • /
    • pp.91-97
    • /
    • 2002
  • This paper describes a heuristic search technique carrying out collision avoidance for Autonomous Underwater Vehicles(AUVs). Fuzzy relational products are used as the mathematical implement for the analysis and synthesis of relations between obstacles that are met in the navigation environment and available candidate nodes. In this paper, we propose a more effective evaluation function that reflects the heuristic information of domain experts on obstacle clearance, and an advanced heuristic search method performing collision avoidance for AUVs. The search technique adopts fuzzy relational products to conduct path-planning of intelligent navigation system. In order to verify the performance of proposed heuristic search, it is compared with $A^*$ search method through simulation in view of the CPU time, the optimization of path and the amount of memory usage.

Obstacle avoidance and Path Planning of Mobile Robot using Window Analyzing Method (윈도우 분석법을 이용한 이동로보트의 장애물 회피와 경로계획)

  • 조규상
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.421-424
    • /
    • 1998
  • In this paper, a new on-line local path planning algorithm without local minima problem is proposed. This method, called Window Analysis Method (WAM), is simple and fast, and it helps a robot take a safe path avoiding obstacles in unknown environment. WAM has simulated on the mobile robot to demonstrate its reliability and fesibility.

  • PDF

Width Estimation of Stationary Objects using Radar Image for Autonomous Driving of Unmanned Ground Vehicles (무인차량 자율주행을 위한 레이다 영상의 정지물체 너비추정 기법)

  • Kim, Seongjoon;Yang, Dongwon;Kim, Sujin;Jung, Younghun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.711-720
    • /
    • 2015
  • Recently many studies of Radar systems mounted on ground vehicles for autonomous driving, SLAM (Simultaneous localization and mapping) and collision avoidance have been reported. Since several pixels per an object may be generated in a close-range radar application, a width of an object can be estimated automatically by various signal processing techniques. In this paper, we tried to attempt to develop an algorithm to estimate obstacle width using Radar images. The proposed method consists of 5 steps - 1) background clutter reduction, 2) local peak pixel detection, 3) region growing, 4) contour extraction and 5)width calculation. For the performance validation of our method, we performed the test width estimation using a real data of two cars acquired by commercial radar system - I200 manufactured by Navtech. As a result, we verified that the proposed method can estimate the widths of targets.

Implementing Dynamic Obstacle Avoidance of Autonomous Multi-Mobile Robot System (자율 다개체 모바일 로봇 시스템의 동적 장애물 회피 구현)

  • Kim, Dong W.;Yi, Cho-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.1
    • /
    • pp.11-19
    • /
    • 2013
  • For an autonomous multi-mobile robot system, path planning and collision avoidance are important functions used to perform a given task collaboratively and cooperatively. This study considers these important and challenging problems. The proposed approach is based on a potential field method and fuzzy logic system. First, a global path planner selects the paths of the robots that minimize the cost function from each robot to its own target using a potential field. Then, a local path planner modifies the path and orientation from the global planner to avoid collisions with static and dynamic obstacles using a fuzzy logic system. In this paper, each robot independently selects its destination and considers other robots as dynamic obstacles, and there is no need to predict the motion of obstacles. This process continues until the corresponding target of each robot is found. To test this method, an autonomous multi-mobile robot simulator (AMMRS) is developed, and both simulation-based and experimental results are given. The results show that the path planning and collision avoidance strategies are effective and useful for multi-mobile robot systems.

Reactive navigation of mobile robots using optmal via-point selection method (최적 경유점 선택 방법을 이용한 이동로봇의 반응적 주행)

  • 김경훈;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.227-230
    • /
    • 1997
  • In this paper, robot navigation experiments with a new navigation algorithm are carried out in real environments. The authors already proposed a reactive navigation algorithm for mobile robots using optimal via-point selection method. At each sampling time, a number of via-point candidates is constructed with various candidates of heading angles and velocities. The robot detects surrounding obstacles, and the proposed algorithm utilizes fuzzy multi-attribute decision making in selecting the optimal via-point the robot would proceed at next step. Fuzzy decision making allows the robot to choose the most qualified via-point even when the two navigation goals-obstacle avoidance and target point reaching-conflict each other. The experimental result shows the successful navigation can be achieved with the proposed navigation algorithm for real environments.

  • PDF

Development of hierarchically structured control algorithm of a mobile robot (자율이동로봇의 계층구조 제어 알고리즘의 개발)

  • 최정원;박찬규;이석규
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.5
    • /
    • pp.384-389
    • /
    • 2003
  • We propose a hierarchically structured navigation algorithm for multiple mobile robots under unknown dynamic environment based on fussy-neural algorithm. The proposed algorithm consists of two basic layers. The lower layer consists of two parts such as fuzzy algorithm for goal approach and fuzzy-neural algorithm for obstacle avoidance. The upper layer which is basically fuzzy algorithm adjusts the magnitude of the weighting factor depending on the environmental situation. In addition, The proposed algorithm provides an efficient method to escape local mimimum points as shown in the simulation result. The efficacy of the proposed method is demonstrated via some simulations.

Flexible and Scalable Formation for Swarm Systems

  • Kim Dong-Hun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.3
    • /
    • pp.222-229
    • /
    • 2005
  • This paper presents a self-organizing scheme for multi-agent swarm systems based on coupled nonlinear oscillators (CNOs). In this scheme, unicycle robots self-organize to flock and arrange group formation through attractive and repulsive forces among themselves. The main result is the maintenance of flexible and scalable formation. It is also shown how localized distributed controls are utilized throughout group behaviors such as formation and migration. In the paper, the proposed formation ensures safe separation and good cohesion performance among the robots. Several examples show that the proposed method for group formation performs the group behaviors such as reference path following, obstacle avoidance and flocking, and the formation characteristics such as flexibility and scalability, effectively.

Local Obstacle Avoidance Method of a Mobile Robots Using LASER scanning (레이저 스케닝 센서를 이용한 이동 로봇의 지역 장애물 회피 방법)

  • Kim, Sung-Cheol;Kim, Won-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2002.06a
    • /
    • pp.114-119
    • /
    • 2002
  • 본 논문에서는 자율 이동 로봇의 장애물에 대한 실시간 충돌 회피 동작의 문제에 대하여, 로봇이 장애물과 충돌하지 않는 안정적인 회피 동작과 유연한 궤적 생성, 그리고 효과적인 최적의 조향 동작을 계획할 수 있게 하기 위하여 레이저 스케닝 센서를 이용한 지역 장애물 회피 방법을 제안한다. 레이저 센서를 이용한 로봇의 안전한 방향 탐색은 자율 이동 로봇이 검출할 수 있는 최대의 검출 영역에서부터 로봇의 중심점을 향해 순차적으로 임계치를 줄여가는 동안 나타나는 무충돌 안전 구간과 충돌 구간을 정의함으로서 구성된다. 제안한 안전 방향 구간 탐색에 의한 로봇의 장애물 회피 동작의 성능 실험은 최적 방향의 탐색 성능을 평가하며, 실제의 이동 로봇을 이용하여 실험한 결과에 대하여 고찰하고 결론을 내린다.

  • PDF

Efficient Kinect Sensor-Based Reactive Path Planning Method for Autonomous Mobile Robots in Dynamic Environments (키넥트 센서를 이용한 동적 환경에서의 효율적인 이동로봇 반응경로계획 기법)

  • Tuvshinjargal, Doopalam;Lee, Deok Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.6
    • /
    • pp.549-559
    • /
    • 2015
  • In this paper, an efficient dynamic reactive motion planning method for an autonomous vehicle in a dynamic environment is proposed. The purpose of the proposed method is to improve the robustness of autonomous robot motion planning capabilities within dynamic, uncertain environments by integrating a virtual plane-based reactive motion planning technique with a sensor fusion-based obstacle detection approach. The dynamic reactive motion planning method assumes a local observer in the virtual plane, which allows the effective transformation of complex dynamic planning problems into simple stationary ones proving the speed and orientation information between the robot and obstacles. In addition, the sensor fusion-based obstacle detection technique allows the pose estimation of moving obstacles using a Kinect sensor and sonar sensors, thus improving the accuracy and robustness of the reactive motion planning approach. The performance of the proposed method was demonstrated through not only simulation studies but also field experiments using multiple moving obstacles in hostile dynamic environments.

Navigation of Autonomous Mobile Robot using Fuzzy Neural Network (퍼지-뉴럴 네트워크를 이용한 자율 이동로봇의 운항)

  • Choi, Jeong-Won
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.4
    • /
    • pp.19-25
    • /
    • 2008
  • This paper proposes a hierarchically structured navigation algorithm for autonomous mobile robot under unknown environment based on fuzzy-neal network. The proposed algorithm consists of two basic layers as follows. The lower layer consists of two parts such as fuzzy algorithm for goal approach and fuzzy-neural algorithm for obstacle avoidance. The upper layer which is basically fuzzy algorithm adjusts the magnitude of the weighting factor depending on the environmental situation. The proposed algorithm provides an efficient method to escape local mimimum points as shown in the simulation result. Most simulation results show that this algorithm is very effective for autonomous mobile robots' traveling in unknown field.