• Title/Summary/Keyword: Local features

Search Result 1,419, Processing Time 0.026 seconds

Estimating 3-D surface geometrical features on the basis of surface curvature consistency

  • Zha, H.B.;Muramatsu, S.;Nagata, T.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10b
    • /
    • pp.54-59
    • /
    • 1993
  • This paper presents a method of estimating 3-D surface geometrical features that are necessary for 3-D object recognition and image interpretation. The features, such as surface needle maps and curvatures, are computed from range or intensity images. In general, the range and intensity images are prone to noises, and hence the features computed by differentiation calculi on such a noisy image are hardly applicable to industrial recognition tasks. In our approach, we try to obtain a more accurate estimate of the features by using a least-squares minimization procedure subject to local curvature consistency constraints. The algorithm is robust with respect to noises and is completely independent of the viewpoint at which the image is taken. The performance of the ajgoritlim is evaluated using both synthetic data and real intensity images.

  • PDF

Action Recognition Method in Sports Video Shear Based on Fish Swarm Algorithm

  • Jie Sun;Lin Lu
    • Journal of Information Processing Systems
    • /
    • v.19 no.4
    • /
    • pp.554-562
    • /
    • 2023
  • This research offers a sports video action recognition approach based on the fish swarm algorithm in light of the low accuracy of existing sports video action recognition methods. A modified fish swarm algorithm is proposed to construct invariant features and decrease the dimension of features. Based on this algorithm, local features and global features can be classified. The experimental findings on the typical sports action data set demonstrate that the key details of sports action can be successfully retained by the dimensionality-reduced fusion invariant characteristics. According to this research, the average recognition time of the proposed method for walking, running, squatting, sitting, and bending is less than 326 seconds, and the average recognition rate is higher than 94%. This proves that this method can significantly improve the performance and efficiency of online sports video motion recognition.

Object Recognition using Neural Network (신경회로망을 이용한 물체인식)

  • Kim, Hyoung-Geun;Park, Sung-Kyu;Song, Chull;Choi, Kap-Seok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.3
    • /
    • pp.197-205
    • /
    • 1992
  • In this paper object recognition using neural network is studied. The recognition is accomplished by matching linear line segments which are formed by local features extracted from the curvature points. Since there is similarities among segments. The boundary of models is not distinct in feature space. Due to these indistinctness the ambiguity of recognition occurs, and the recognition rate becomes degraded according to the limitation of boundary decision capability of neural network for similar of features. Object recognition and to improve recognition rate. Local features are used to represent the object effectively. The validity of the object recognition system is demonstrated by experiments for the occluded and varied objects.

  • PDF

A Study on the Technology Transfer Efficiency for Public Institutes Using DEA Model (DEA 모형을 이용한 공공연구기관의 기술이전 효율성 분석에 관한 연구)

  • Hyon, Man-Sok;Yoo, Wang-Jin
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.31 no.2
    • /
    • pp.94-103
    • /
    • 2008
  • This study measured technology transfer efficiency for public institutes. The study made use of DEA being one of the non-parametric linear programming to evaluate technology transfer efficiency for public institutes and to measure technology efficiency, pure technical efficiency and scale efficiency. The measurement of the technology transfer efficiency for public institutes was as follows: The cause of the technology transfer inefficiency was affected by pure technical inefficiency more than by scale inefficiency. Public institutes' RTS(Return To Scale) value varied depending upon the features of the organizations than the features of the regions. Public research institutes' RTS value is more effective than universities' RTS value. We compared the RTS group with the RTS of Projected DMU groups. The RTS group had constant returns to scale effect while the RTS of the Projected DMU had increasing returns to scale effect. The technology transfer efficiency of public institutes varied depending upon the features of the organizations and regions : The technology transfer efficiency of public institutes were as follows : public research institutes at the metropolitan area, public research institutes at the local areas, universities at the metropolitan area and universities at the local areas. In other words, the technology transfer efficiency was affected by organizational characteristics more than by regional characteristics at the place where public institutes were located.

Deep Local Multi-level Feature Aggregation Based High-speed Train Image Matching

  • Li, Jun;Li, Xiang;Wei, Yifei;Wang, Xiaojun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.5
    • /
    • pp.1597-1610
    • /
    • 2022
  • At present, the main method of high-speed train chassis detection is using computer vision technology to extract keypoints from two related chassis images firstly, then matching these keypoints to find the pixel-level correspondence between these two images, finally, detection and other steps are performed. The quality and accuracy of image matching are very important for subsequent defect detection. Current traditional matching methods are difficult to meet the actual requirements for the generalization of complex scenes such as weather, illumination, and seasonal changes. Therefore, it is of great significance to study the high-speed train image matching method based on deep learning. This paper establishes a high-speed train chassis image matching dataset, including random perspective changes and optical distortion, to simulate the changes in the actual working environment of the high-speed rail system as much as possible. This work designs a convolutional neural network to intensively extract keypoints, so as to alleviate the problems of current methods. With multi-level features, on the one hand, the network restores low-level details, thereby improving the localization accuracy of keypoints, on the other hand, the network can generate robust keypoint descriptors. Detailed experiments show the huge improvement of the proposed network over traditional methods.

Explainable analysis of the Relationship between Hypertension with Gas leakages (설명 가능한 인공지능 기술을 활용한 가스누출과 고혈압의 연관 분석)

  • Dashdondov, Khongorzul;Jo, Kyuri;Kim, Mi-Hye
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.11a
    • /
    • pp.55-56
    • /
    • 2022
  • Hypertension is a severe health problem and increases the risk of other health issues, such as heart disease, heart attack, and stroke. In this research, we propose a machine learning-based prediction method for the risk of chronic hypertension. The proposed method consists of four main modules. In the first module, the linear interpolation method fills missing values of the integration of gas and meteorological datasets. In the second module, the OrdinalEncoder-based normalization is followed by the Decision tree algorithm to select important features. The prediction analysis module builds three models based on k-Nearest Neighbors, Decision Tree, and Random Forest to predict hypertension levels. Finally, the features used in the prediction model are explained by the DeepSHAP approach. The proposed method is evaluated by integrating the Korean meteorological agency dataset, natural gas leakage dataset, and Korean National Health and Nutrition Examination Survey dataset. The experimental results showed important global features for the hypertension of the entire population and local components for particular patients. Based on the local explanation results for a randomly selected 65-year-old male, the effect of hypertension increased from 0.694 to 1.249 when age increased by 0.37 and gas loss increased by 0.17. Therefore, it is concluded that gas loss is the cause of high blood pressure.

Improved Gradient Direction Assisted Linking Algorithm for Linear Feature Extraction in High Resolution Satellite Images, an Iterative Dynamic Programming Approach

  • Yang, Kai;Liew, Soo Chin;Lee, Ken Yoong;Kwoh, Leong Keong
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.408-410
    • /
    • 2003
  • In this paper, an improved gradient direction assisted linking algorithm is proposed. This algorithm begins with initial seeds satisfying some local criteria. Then it will search along the direction provided by the initial point. A window will be generated in the gradient direction of the current point. Instead of the conventional method which only considers the value of the local salient structure, an improved mathematical model is proposed to describe the desired linear features. This model not only considers the value of the salient structure but also the direction of it. Furthermore, the linking problem under this model can be efficiently solved by dynamic programming method. This algorithm is tested for linear features detection in IKONOS images. The result demonstrates this algorithm is quite promising.

  • PDF

SLAM of a Mobile Robot using Thinning-based Topological Information

  • Lee, Yong-Ju;Kwon, Tae-Bum;Song, Jae-Bok
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.5
    • /
    • pp.577-583
    • /
    • 2007
  • Simultaneous Localization and Mapping (SLAM) is the process of building a map of an unknown environment and simultaneously localizing a robot relative to this map. SLAM is very important for the indoor navigation of a mobile robot and much research has been conducted on this subject. Although feature-based SLAM using an Extended Kalman Filter (EKF) is widely used, it has shortcomings in that the computational complexity grows in proportion to the square of the number of features. This prohibits EKF-SLAM from operating in real time and makes it unfeasible in large environments where many features exist. This paper presents an algorithm which reduces the computational complexity of EKF-SLAM by using topological information (TI) extracted through a thinning process. The global map can be divided into local areas using the nodes of a thinning-based topological map. SLAM is then performed in local instead of global areas. Experimental results for various environments show that the performance and efficiency of the proposed EKF-SLAM/TI scheme are excellent.

Enhanced SIFT Descriptor Based on Modified Discrete Gaussian-Hermite Moment

  • Kang, Tae-Koo;Zhang, Huazhen;Kim, Dong W.;Park, Gwi-Tae
    • ETRI Journal
    • /
    • v.34 no.4
    • /
    • pp.572-582
    • /
    • 2012
  • The discrete Gaussian-Hermite moment (DGHM) is a global feature representation method that can be applied to square images. We propose a modified DGHM (MDGHM) method and an MDGHM-based scale-invariant feature transform (MDGHM-SIFT) descriptor. In the MDGHM, we devise a movable mask to represent the local features of a non-square image. The complete set of non-square image features are then represented by the summation of all MDGHMs. We also propose to apply an accumulated MDGHM using multi-order derivatives to obtain distinguishable feature information in the third stage of the SIFT. Finally, we calculate an MDGHM-based magnitude and an MDGHM-based orientation using the accumulated MDGHM. We carry out experiments using the proposed method with six kinds of deformations. The results show that the proposed method can be applied to non-square images without any image truncation and that it significantly outperforms the matching accuracy of other SIFT algorithms.

A Feature-Based Robust Watermarking Scheme Using Circular Invariant Regions

  • Doyoddorj, Munkhbaatar;Rhee, Kyung-Hyung
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.5
    • /
    • pp.591-600
    • /
    • 2013
  • This paper addresses a feature-based robust watermarking scheme for digital images using a local invariant features of SURF (Speeded-Up Robust Feature) descriptor. In general, the feature invariance is exploited to achieve robustness in watermarking schemes, but the leakage of information about hidden watermarks from publicly known locations and sizes of features are not considered carefully in security perspective. We propose embedding and detection methods where the watermark is bound with circular areas and inserted into extracted circular feature regions. These methods enhance the robustness since the circular watermark is inserted into the selected non-overlapping feature regions instead of entire image contents. The evaluation results for repeatability measures of SURF descriptor and robustness measures present the proposed scheme can tolerate various attacks, including signal processing and geometric distortions.