• Title/Summary/Keyword: Local cooling

Search Result 347, Processing Time 0.024 seconds

Numerical Experiments on the Terrain Following Strong Wind Phenomenon Effecting to the Onset of Sea Breeze (해풍시작에 영향을 미치는 지형성 강풍현상에 대한 수치실험)

  • Lee, Hwa-Woon;Jung, Woo-Sik
    • Journal of the Korean earth science society
    • /
    • v.24 no.4
    • /
    • pp.325-336
    • /
    • 2003
  • The onset time of sea breeze at Haeundae is faster than that at Suyoung in spite of the observation site at Suyoung being 5m and that of Haeundae being 1 km away from the coastline. We therefore simulate the effects of terrain on the onset time of sea breeze at Suyoung and Haeundae districts by using the LCM(Local Circulation Model). This phenomenon is due to the nighttime density flow, which is created by nighttime radiative cooling. It follows the slope of the highlands surrounding the urban area, gathers at a central area of Busan, and then flows out to a lower area like Suyoung river. This process continues after sunrise. In researching the AWS wind speed, we find an important thing. That is to say, the nighttime mean wind speed at Suyoung is three times greater than that at Haeundae. This property shows that Suyoung is an outflow channel of nighttime air mass. The above observed data shows that terrain effect has a important role on the onset of sea breeze.

Far-ultraviolet study of the GSH006-15+7: A local Galactic supershell

  • Jo, Young-Soo;Min, Kyoung-Wook;Seon, Kwang-Il
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.61.1-61.1
    • /
    • 2014
  • GSH 006-15+7 is a Milky Way supershell discovered by Moss et al. (2012). This supershell shows large shell-like structures in H I velocity maps. We have analyzed FUV emission for the supershell regions based on the FIMS and GALEX observations. Bright FUV flux at the boundaries of the supershell is mostly originated from dust scattering of FUV photons by dust clouds which was also observed at the boundaries of the supershell. We could find the distance to the supershell can be closer more than 30% compared with the distance of 1500 pc suggested by Moss et al. (2012) from the dust scattering simulation. And we also found the albedo and the phase function asymmetry factor of interstellar grains were 0.30 and 0.40, respectively. The confidence range for the albedo covers the theoretical value of 0.40, but g-factor is rather smaller than the theoretical value of 0.65. The small g-factor might mean the environment of turbulent ISM of the supershell. Meanwhile, the excess of C IV and X-ray emissions in the inside of the supershell can support the existence of hot gas and cooling in the supershell. And the C IV and X-ray emissions are monotonically decrease as away from the center of the SNR. This indicates the size of the hot bubble has considerably shrunk. We applied a simple simulation model to the PDR candidate region of the lower part of the supershell and obtained a H2 column density N(H2) = 1017.0-18.0 cm-2 and total hydrogen density nH ${\geq}$ 10 cm-3. This result shows the PDR candidate region represents a transition region from the warm phase to the cool phase in the PDR.

  • PDF

The Effect of Nozzle Collar on Single Phase and Boiling Heat Transfer by Planar Impinging Jet (평면 충돌제트에서 노즐 깃이 단상 및 비등 열전달에 미치는 영향)

  • Shin, Chang-Hwan;Yim, Seong-Hwan;Wu, Seong-Je;Cho, Hyung-Hee
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1452-1457
    • /
    • 2004
  • The water jet impingement cooling is one of the techniques to remove heat from high heat flux equipments. We investigate the local heat transfer of the confined water impinging jet and the effect of nozzle collar to enhance the heat transfer in the free surface jet and submerged jet. Boiling is initiated from the furthest downstream and the wall temperature increase is reduced with developing boiling, forming the flat temperature distributions. The reduction in the nozzle-to-surface distance for $H/W{\leq}1$ causes the significant increases and distribution changes in heat transfer. Developed boiling reduces the differences in heat transfer for various conditions. The nozzle collar is employed at the nozzle exit. The distances from heated surface to guide plate, $H_c$ are 0.25W, 0.5W and 1.0W. The liquid film thickness is reduced and the velocity of wall jet increase as decreased spacing of collar to heated surface. Heat transfer is enhanced for region from the stagnation to $x/W{\sim}8$ in the free surface jet and to $x/W{\sim}5$ in the submerged jet. For nucleate boiling region of further downstream, the heat transfer by the nozzle collar is decreased in submerged jet compare with higher velocity condition. It is because the increased velocity by collar is de-accelerated at downstream.

  • PDF

Moor Vegetation of Mt. Shinbul in Yangsan (양산 신불산의 습원 식생)

  • Kim, Jong-Won;Han, Seung-Uk
    • The Korean Journal of Ecology
    • /
    • v.28 no.2
    • /
    • pp.85-92
    • /
    • 2005
  • This study emphasizes syntaxonomy and syndynamics of intermediate (Zwischen) moor (area: 14,000 $m^2$) at Mt. Shinbul in Yangsan, southeastern Korean Peninsula. A total of 105 vascular plant species including 26 monitor-species were recorded. Analysis by the $Z\"{u}rich$-Montpellier School's method distinguished eight vegetation units: Eleocharitis-Blyxetum echinospermae ass. nov., Eriocaulon sikokianum-Utricularia racemosa community, Eleocharis wichurai-Molinia japonica community, Platanthero-Molinietum japonicas, Miscanthus sinensis for. purpurascens community, Tripterygium regelii community, Symplocos chinensis-Quercus mongolica community, Symplocos chinensis-Quercus dentata community. PCoA (Principal Coordinates Analysis) shows that vegetation changes and distributional aspects are associated with both moisture condition and sunlight on the ground layer and soil nutrient level (mesotrophic to oligotrophic). Most important to Molinietea japonicas being representative intermediate moor vegetation at the southeasternmost fringe of the Korean Peninsula is the local cooling effect by mountainous cloud and mist zone resulting in shorter and wetter growing season. The Yangsan moor vegetation was compared with earlier descriptions of related Mujechi moor from anthropogenic and natural moor vegetations.

An Efficient Implementation of Mobile Raspberry Pi Hadoop Clusters for Robust and Augmented Computing Performance

  • Srinivasan, Kathiravan;Chang, Chuan-Yu;Huang, Chao-Hsi;Chang, Min-Hao;Sharma, Anant;Ankur, Avinash
    • Journal of Information Processing Systems
    • /
    • v.14 no.4
    • /
    • pp.989-1009
    • /
    • 2018
  • Rapid advances in science and technology with exponential development of smart mobile devices, workstations, supercomputers, smart gadgets and network servers has been witnessed over the past few years. The sudden increase in the Internet population and manifold growth in internet speeds has occasioned the generation of an enormous amount of data, now termed 'big data'. Given this scenario, storage of data on local servers or a personal computer is an issue, which can be resolved by utilizing cloud computing. At present, there are several cloud computing service providers available to resolve the big data issues. This paper establishes a framework that builds Hadoop clusters on the new single-board computer (SBC) Mobile Raspberry Pi. Moreover, these clusters offer facilities for storage as well as computing. Besides the fact that the regular data centers require large amounts of energy for operation, they also need cooling equipment and occupy prime real estate. However, this energy consumption scenario and the physical space constraints can be solved by employing a Mobile Raspberry Pi with Hadoop clusters that provides a cost-effective, low-power, high-speed solution along with micro-data center support for big data. Hadoop provides the required modules for the distributed processing of big data by deploying map-reduce programming approaches. In this work, the performance of SBC clusters and a single computer were compared. It can be observed from the experimental data that the SBC clusters exemplify superior performance to a single computer, by around 20%. Furthermore, the cluster processing speed for large volumes of data can be enhanced by escalating the number of SBC nodes. Data storage is accomplished by using a Hadoop Distributed File System (HDFS), which offers more flexibility and greater scalability than a single computer system.

Progressive Collapse of Steel High-Rise Buildings Exposed to Fire: Current State of Research

  • Jiang, Jian;Li, Guo-Qiang
    • International Journal of High-Rise Buildings
    • /
    • v.7 no.4
    • /
    • pp.375-387
    • /
    • 2018
  • This paper presents a review on progressive collapse mechanism of steel framed buildings exposed to fire. The influence of load ratios, strength of structural members (beam, column, slab, connection), fire scenarios, bracing systems, fire protections on the collapse mode and collapse time of structures is comprehensively reviewed. It is found that the key influencing factors include load ratio, fire scenario, bracing layout and fire protection. The application of strong beams, high load ratios, multi-compartment fires will lead to global downward collapse which is undesirable. The catenary action in beams and tensile membrane action in slabs contribute to the enhancement of structural collapse resistance, leading to a ductile collapse mechanism. It is recommended to increase the reinforcement ratio in the sagging and hogging region of slabs to not only enhance the tensile membrane action in the slab, but to prevent the failure of beam-to-column connections. It is also found that a frame may collapse in the cooling phase of compartment fires or under travelling fires. This is because that the steel members may experience maximum temperatures and maximum displacements under these two fire scenarios. An edge bay fire is more prone to induce the collapse of structures than a central bay fire. The progressive collapse of buildings can be effectively prevented by using bracing systems and fire protections. A combination of horizontal and vertical bracing systems as well as increasing the strength and stiffness of bracing members is recommended to enhance the collapse resistance. A protected frame dose not collapse immediately after the local failure but experiences a relatively long withstanding period of at least 60 mins. It is suggested to use three-dimensional models for accurate predictions of whether, when and how a structure collapses under various fire scenarios.

Heating Performance Prediction of Low-depth Modular Ground Heat Exchanger based on Artificial Neural Network Model (인공신경망 모델을 활용한 저심도 모듈러 지중열교환기의 난방성능 예측에 관한 연구)

  • Oh, Jinhwan;Cho, Jeong-Heum;Bae, Sangmu;Chae, Hobyung;Nam, Yujin
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.18 no.3
    • /
    • pp.1-6
    • /
    • 2022
  • Ground source heat pump (GSHP) system is highly efficient and environment-friendly and supplies heating, cooling and hot water to buildings. For an optimal design of the GSHP system, the ground thermal properties should be determined to estimate the heat exchange rate between ground and borehole heat exchangers (BHE) and the system performance during long-term operating periods. However, the process increases the initial cost and construction period, which causes the system to be hindered in distribution. On the other hand, much research has been applied to the artificial neural network (ANN) to solve problems based on data efficiently and stably. This research proposes the predictive performance model utilizing ANN considering local characteristics and weather data for the predictive performance model. The ANN model predicts the entering water temperature (EWT) from the GHEs to the heat pump for the modular GHEs, which were developed to reduce the cost and spatial disadvantages of the vertical-type GHEs. As a result, the temperature error between the data and predicted results was 3.52%. The proposed approach was validated to predict the system performance and EWT of the GSHP system.

Frictional Anisotropy of CVD Bi-Layer Graphene Correlated with Surface Corrugated Structures

  • Park, Seonha;Choi, Mingi;Kim, Seokjun;Kim, Songkil
    • Tribology and Lubricants
    • /
    • v.38 no.6
    • /
    • pp.235-240
    • /
    • 2022
  • Atomically-thin 2D nanomaterials can be easily deformed and have surface corrugations which can influence the frictional characteristics of the 2D nanomaterials. Chemical vapor deposition (CVD) graphene can be grown in a wafer scale, which is suitable as a large-area surface coating film. The CVD growth involves cooling process to room temperature, and the thermal expansion coefficients mismatch between graphene and the metallic substrate induces a compressive strain in graphene, resulting in the surface corrugations such as wrinkles and atomic ripples. Such corrugations can induce the friction anisotropy of graphene, and therefore, accurate imaging of the surface corrugation is significant for better understanding about the friction anisotropy of CVD graphene. In this work, the combinatorial analysis using friction force microscopy (FFM) and transverse shear microscopy (TSM) was implemented to unveil the friction anisotropy of CVD bi-layer graphene. The periodic friction anisotropy of the wrinkles was measured following a sinusoidal curve depending on the angles between the wrinkles and the scanning tip, and the two domains were observed to have the different friction signals due to the different directions of the atomic ripples, which was confirmed by the high-resolution FFM and TSM imaging. In addition, we revealed that the atomic ripples can be easily suppressed by ironing the surface during AFM scans with an appropriate normal force. This work demonstrates that the friction anisotropy of CVD bilayer graphene is well-correlated with the corrugated structures and the local friction anisotropy induced by the atomic ripples can be controllably removed by simple AFM scans.

Assessment of Occupational Health Risks for Maintenance Work in Fabrication Facilities: Brief Review and Recommendations

  • Dong-Uk Park;Kyung Ehi Zoh;Eun Kyo Jeong;Dong-Hee Koh;Kyong-Hui Lee;Naroo Lee;Kwonchul Ha
    • Safety and Health at Work
    • /
    • v.15 no.1
    • /
    • pp.87-95
    • /
    • 2024
  • Background: This study focuses on assessing occupational risk for the health hazards encountered during maintenance works (MW) in semiconductor fabrication (FAB) facilities. Objectives: The objectives of this study include: 1) identifying the primary health hazards during MW in semiconductor FAB facilities; 2) reviewing the methods used in evaluating the likelihood and severity of health hazards through occupational health risk assessment (OHRA); and 3) suggesting variables for the categorization of likelihood of exposures to health hazards and the severity of health effects associated with MW in FAB facilities. Methods: A literature review was undertaken on OHRA methodology and health hazards resulting from MW in FAB facilities. Based on this review, approaches for categorizing the exposure to health hazards and the severity of health effects related to MW were recommended. Results: Maintenance workers in FAB facilities face exposure to hazards such as debris, machinery entanglement, and airborne particles laden with various chemical components. The level of engineering and administrative control measures is suggested to assess the likelihood of simultaneous chemical and dust exposure. Qualitative key factors for mixed exposure estimation during MW include the presence of safe operational protocols, the use of air-jet machines, the presence and effectiveness of local exhaust ventilation system, chamber post-purge and cooling, and proper respirator use. Using the risk (R) and hazard (H) codes of the Globally Harmonized System alongside carcinogenic, mutagenic, or reprotoxic classifications aid in categorizing health effect severity for OHRA. Conclusion: Further research is needed to apply our proposed variables in OHRA for MW in FAB facilities and subsequently validate the findings.

Effect of Sucrose Concentration on Survival After Frozen-thawed of Bovine IVF Blastocysts in Ethylene Glycol Based Freezing Medium for Slow-Cooling (소 체외수정란의 Slow Freezing을 위해서 Ethylene Glycol 동결보호제에 Sucrose 첨가 농도에 의한 동결효율)

  • 조상래;김현종;최창용;진현주;손동수;최선호
    • Journal of Animal Science and Technology
    • /
    • v.48 no.6
    • /
    • pp.797-804
    • /
    • 2006
  • The present study was undertaken to investigate the post-thawed survivability of bovine embryo depending on different dose of ethylene glycol and sucrose. Ovaries were collected at local slaughterhouse and the cumulus-oocyte-complexes aspirated from ovaries were in vitro matured, fertilized and cultured at 39°C in an atmosphere of 5% CO2 incubator. For conventional slow-freezing, d 7 or 8 expanded blastocysts were collected. Embryos were equilibrated in 1.5 M and 1.8 M ethylene glycol(EG) with 0.1 M and 0.3 M sucrose in Dulbecco's phosphate-buffered saline(D-PBS) supplemented with 0.5% bovine serum albumin. Embryos were then loaded individually into 0.25ml-straw and placed directly into cooling chamber of programmable freezer precooled to 󰠏7°C, after 2 min, the straw was seeded, maintained at 󰠏7°C for 8 min, and then cooled to 󰠏35°C at 0.3°C/min, plunged and stored in liquid nitrogen for at least 3 days. For thawing, the straw containing embryos were warmed in air for 10 sec and exposed to 37°C water for 20 sec. Straws were then removed from 37°C water. Rates of blastocyst survive and hatching were evaluated at 24 to 72 h post-warming. No difference of the survivability was shown between 1.5 M and 1.8 M EG (71 and 70%, respectively). Addition of 0.1 M sucrose to 1.5 M and 1.8 M ethylene glycol in the freezing solution did not differ significantly embryo survival (74 and 77%, respectively), whereas survival rates was higher(89%) in freezing solution contained 0.3M sucrose to 1.8M EG compared with 0.3M sucrose to 1.5M EG group(71%). However, there was no difference in the overall total cell number between the two groups (122±1.8 vs 131±1.4, respectively). In conclusion, the results suggest that 0.3 M sucrose in 1.8 M EG may be optimal condition for freezing and thawing methods with in vitro produced embryos and may be applied to on-farm conditions for embryo transfer.