• Title/Summary/Keyword: Local climate zones

Search Result 17, Processing Time 0.025 seconds

Analyzing Climate Zones Using Hydro-Meteorological Observation Data in Andong Dam Watershed, South Korea (수문기상 관측정보를 활용한 안동댐 유역 기후권역 구분 및 분석)

  • Kim, Sea Jin;Lim, Chul-Hee;Lim, Yoon-Jin;Moon, Jooyeon;Song, Cholho;Lee, Woo-Kyun
    • Journal of Climate Change Research
    • /
    • v.7 no.3
    • /
    • pp.269-282
    • /
    • 2016
  • Watershed area can be submerged due to constructions and management of dams, and these change can impact not only on ecosystem and environment of river basin area but also on local climate. This study is conducted to construct and classify climate zones of Andong Dam watershed where the area is submerged due to the construction of the dam. By applying Principal Components Analysis (PCA) and Getis-Ord $Gi^*$ statistics, three climate zones were classified for the result. Each zone was then analyzed and validated with climatic and geological features including topography, land cover, and forest type map. As a result of the analysis, there was a difference in temperature, elevation, precipitation and tree species distribution among the zones. Also, an analysis of land cover map showed that there were more agricultural land near Andong Reservoir. This study on the climatic classification is considered to be useful as the basis for decision-making or policy enforcement regarding ecosystem, environmental management or climate change response.

Spatial Distribution of Urban Heat Island based on Local Climate Zone of Automatic Weather Station in Seoul Metropolitan Area (자동기상관측소의 국지기후대에 근거한 서울 도시 열섬의 공간 분포)

  • Hong, Je-Woo;Hong, Jinkyu;Lee, Seong-Eun;Lee, Jaewon
    • Atmosphere
    • /
    • v.23 no.4
    • /
    • pp.413-424
    • /
    • 2013
  • Urban Heat Island (UHI) intensity is one of vital parameters in studying urban boundary layer meteorology as well as urban planning. Because the UHI intensity is defined as air temperature difference between urban and rural sites, an objective sites selection criterion is necessary for proper quantification of the spatial variations of the UHI intensity. This study quantified the UHI intensity and its spatial pattern, and then analyzed their connections with urban structure and metabolism in Seoul metropolitan area where many kinds of land use and land cover types coexist. In this study, screen-level temperature data in non-precipitation day conditions observed from 29 automatic weather stations (AWS) in Seoul were analyzed to delineate the characteristics of UHI. For quality control of the data, gap test, limit test, and step test based on guideline of World Meteorological Organization were conducted. After classifying all stations by their own local climatological properties, UHI intensity and diurnal temperature range (DTR) are calculated, and then their seasonal patterns are discussed. Maximum UHI intensity was $4.3^{\circ}C$ in autumn and minimum was $3.6^{\circ}C$ in spring. Maximum DTR appeared in autumn as $3.8^{\circ}C$, but minimum was $2.3^{\circ}C$ in summer. UHI intensity and DTR showed large variations with different local climate zones. Despite limited information on accuracy and exposure errors of the automatic weather stations, the observed data from AWS network represented theoretical UHI intensities with difference local climate zone in Seoul.

Quantification of future climate uncertainty over South Korea using eather generator and GCM

  • Tanveer, Muhammad Ejaz;Bae, Deg-Hyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.154-154
    • /
    • 2018
  • To interpret the climate projections for the future as well as present, recognition of the consequences of the climate internal variability and quantification its uncertainty play a vital role. The Korean Peninsula belongs to the Far East Asian Monsoon region and its rainfall characteristics are very complex from time and space perspective. Its internal variability is expected to be large, but this variability has not been completely investigated to date especially using models of high temporal resolutions. Due to coarse spatial and temporal resolutions of General Circulation Models (GCM) projections, several studies adopted dynamic and statistical downscaling approaches to infer meterological forcing from climate change projections at local spatial scales and fine temporal resolutions. In this study, stochastic downscaling methodology was adopted to downscale daily GCM resolutions to hourly time scale using an hourly weather generator, the Advanced WEather GENerator (AWE-GEN). After extracting factors of change from the GCM realizations, these were applied to the climatic statistics inferred from historical observations to re-evaluate parameters of the weather generator. The re-parameterized generator yields hourly time series which can be considered to be representative of future climate conditions. Further, 30 ensemble members of hourly precipitation were generated for each selected station to quantify uncertainty. Spatial map was generated to visualize as separated zones formed through K-means cluster algorithm which region is more inconsistent as compared to the climatological norm or in which region the probability of occurrence of the extremes event is high. The results showed that the stations located near the coastal regions are more uncertain as compared to inland regions. Such information will be ultimately helpful for planning future adaptation and mitigation measures against extreme events.

  • PDF

Long-term ecological monitoring in South Korea: progress and perspectives

  • Jeong Soo Park;Seung Jin Joo;Jaseok Lee;Dongmin Seo;Hyun Seok Kim;Jihyeon Jeon;Chung Weon Yun;Jeong Eun Lee;Sei-Woong Choi;Jae-Young Lee
    • Journal of Ecology and Environment
    • /
    • v.47 no.4
    • /
    • pp.264-271
    • /
    • 2023
  • Environmental crises caused by climate change and human-induced disturbances have become urgent challenges to the sustainability of human beings. These issues can be addressed based on a data-driven understanding and forecasting of ecosystem responses to environmental changes. In this study, we introduce a long-term ecological monitoring system in Korean Long-Term Ecological Research (KLTER), and a plan for the Korean Ecological Observatory Network (KEON). KLTER has been conducted since 2004 and has yielded valuable scientific results. However, the KLTER approach has limitations in data integration and coordinated observations. To overcome these limitations, we developed a KEON plan focused on multidisciplinary monitoring of the physiochemical, meteorological, and biological components of ecosystems to deepen process-based understanding of ecosystem functions and detect changes. KEON aims to answer nationwide and long-term ecological questions by using a standardized monitoring approach. We are preparing three types of observatories: two supersites depending on the climate-vegetation zones, three local sites depending on the ecosystem types, and two mobile deployment platforms to act on urgent ecological issues. The main observation topics were species diversity, population dynamics, biogeochemistry (carbon, methane, and water cycles), phenology, and remote sensing. We believe that KEON can address environmental challenges and play an important role in ecological observations through partnerships with international observatories.

A Study on Human Thermal Comfort of Residential Development Districts in Summer Season (여름철 택지개발지역의 열쾌적성에 관한 연구)

  • Kong, Hak-Yang;Choi, Nakhoon;Park, Sungae;Lee, Jongchun;Park, Sookuk
    • Ecology and Resilient Infrastructure
    • /
    • v.5 no.4
    • /
    • pp.219-228
    • /
    • 2018
  • This study measured the Physiological Equivalent Temperature (PET) of the hottest day time in a day, in order to verify the characteristics of human thermal comfort in case of heat wave during summer time in each region, by subdividing the urban areas in accordance with the climatic characteristics with the use of Local Climate Zone (LCZ) as a method of classifying the type of urban climate and the land cover map, targeting the Homaesil residential development district in Suwon. In the results of measurement, the forest and paddy field showed the moderate heat stress while the urban park showed the strong heat stress. Other developed areas showed the extreme heat stress. Such results show the possibility of institutional utilization for the improvement of human thermal comfort through the verification of climatic characteristics and differences in each type of urban areas, and the efficient placement of green infrastructure and the planning of land use to cope with the heat wave even in the planning stage for the establishment of urban planning.

Analysis of Surface Urban Heat Island and Land Surface Temperature Using Deep Learning Based Local Climate Zone Classification: A Case Study of Suwon and Daegu, Korea (딥러닝 기반 Local Climate Zone 분류체계를 이용한 지표면온도와 도시열섬 분석: 수원시와 대구광역시를 대상으로)

  • Lee, Yeonsu;Lee, Siwoo;Im, Jungho;Yoo, Cheolhee
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_3
    • /
    • pp.1447-1460
    • /
    • 2021
  • Urbanization increases the amount of impervious surface and artificial heat emission, resulting in urban heat island (UHI) effect. Local climate zones (LCZ) are a classification scheme for urban areas considering urban land cover characteristics and the geometry and structure of buildings, which can be used for analyzing urban heat island effect in detail. This study aimed to examine the UHI effect by urban structure in Suwon and Daegu using the LCZ scheme. First, the LCZ maps were generated using Landsat 8 images and convolutional neural network (CNN) deep learning over the two cities. Then, Surface UHI (SUHI), which indicates the land surface temperature (LST) difference between urban and rural areas, was analyzed by LCZ class. The results showed that the overall accuracies of the CNN models for LCZ classification were relatively high 87.9% and 81.7% for Suwon and Daegu, respectively. In general, Daegu had higher LST for all LCZ classes than Suwon. For both cities, LST tended to increase with increasing building density with relatively low building height. For both cities, the intensity of SUHI was very high in summer regardless of LCZ classes and was also relatively high except for a few classes in spring and fall. In winter the SUHI intensity was low, resulting in negative values for many LCZ classes. This implies that UHI is very strong in summer, and some urban areas often are colder than rural areas in winter. The research findings demonstrated the applicability of the LCZ data for SUHI analysis and can provide a basis for establishing timely strategies to respond urban on-going climate change over urban areas.

Human Thermal Environment Analysis with Local Climate Zones and Surface Types in the Summer Nighttime - Homesil Residential Development District, Suwon-si, Gyeonggi-do (Local Climate Zone과 토지피복에 따른 여름철 야간의 인간 열환경 분석 - 경기도 수원시 호매실 택지개발지구)

  • Kong, Hak-Yang;Choi, Nakhoon;Park, Sookuk
    • Ecology and Resilient Infrastructure
    • /
    • v.7 no.4
    • /
    • pp.227-237
    • /
    • 2020
  • Microclimatic data were measured, and the human thermal sensation was analyzed at 10 local climate zones based on the major land cover classification to investigate the thermal environment of urban areas during summer nighttime. From the results, the green infrastructure areas (GNIAs) showed an average air temperature of 1.6℃ and up to 2.4℃ lower air temperature than the gray infrastructure areas (GYIAs), and the GNIAs showed an average relative humidity of 9.0% and up to 15.0% higher relative humidity. The wind speed of the GNIAs and GYIAs had minimal difference and showed no significance at all locations, except for the forest location, which had the lowest wind speed owing to the influence of trees. The local winds and the surface roughness, which was determined based on the heights of buildings and trees, appeared to be the main factors that influenced wind speed. At the mean radiant temperature, the forest location showed the maximum value, owing to the influence of trees. Except at the forest location, the GNIAs showed an average decrease of 5.5℃ compared to GYIAs. The main factor that influenced the mean radiant temperature was the sky view factor. In the analysis of the human thermal sensation, the GNIAs showed a "neutral" thermal perception level that was neither hot nor cold, and the GYIAs showed a "slightly warm" level, which was a level higher than those of the GNIAs. The GNIAs showed a 3.2℃ decrease compared to the GYIAs, except at the highest forest location, which indicated a half-level improvement in the human thermal environment.

Simulation of Local Climate and Crop Productivity in Andong after Multi-Purpose Dam Construction (임하 다목적댐 건설 후 주변지역 기후 및 작물생산력 변화)

  • 윤진일;황재문;이순구
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.42 no.5
    • /
    • pp.579-596
    • /
    • 1997
  • A simulation study was carried out to delineate potential effects of the lake-induced climate change on crop productivity around Lake Imha which was formed after a multi-purpose dam construction in Andong, Korea. Twenty seven cropping zones were identified within the 30 km by 25 km study area. Five automated weather stations were installed within the study area and operated for five years after the lake formation. A geostatistical method was used to calculate the monthly climatological normals of daily maximum and minimum temperature, solar radiation and precipitation for each cropping zone before and after the dam construction. Daily weather data sets for 30 years were generated for each cropping zone from the monthly normals data representing "No lake" and "After lake" climatic scenarios, respectively. They were fed into crop models (ORYZA1 for rice, SOYGRO for soybean, CERES-maize for corn) to simulate the yield potential of each cropping zone. Calculated daily maximum temperature was higher after the dam construction for the period of October through March and lower for the remaining months except June and July. Decrease in daily minimum temperature was predicted for the period of April through August. Monthly total radiation was predicted to decrease after the lake formation in all the months except February, June, and September and the largest drop was found in winter. But there was no consistent pattern in precipitation change. According to the model calculation, the number of cropping zones which showed a decreased yield potential was 2 for soybean and 6 for corn out of 27 zones with a 10 to 17% yield drop. Little change in yield potential was found at most cropping zones in the case of paddy rice, but interannual variation was predicted to increase after the lake formation. the lake formation.

  • PDF

Seasonal fluctuations and changing characteristics of a temperate zone wetland bird community

  • Lee, Soo-Dong;Kang, Hyun-Kyung
    • Journal of Ecology and Environment
    • /
    • v.43 no.2
    • /
    • pp.104-116
    • /
    • 2019
  • Background: The composition of wild bird populations in temperate zones greatly varies depending on phenological changes rather than other environmental factors. Particularly, wild birds appearing in wetlands fluctuate greatly due to the crossover of species arriving for breeding during the summer and for wintering. Therefore, to understand the changes to species composition related to phenology, we conducted this basic analysis of populations to further the cause of the protection of wetland-dependent wild birds. Methods: It is wrong to simply divide a wild bird population investigation into seasons. This study identifies species composition and indicator species that change along with seasons. Wetlands to be surveyed are protected by natural monuments and wetland inventory and are in a state close to nature. In order to identify as many species as possible in wetlands, a survey was conducted in both shallow and deep wetlands. The water depth varied in these areas, ranging from 0.2 to 2.0 m, allowing for both dabbling and diving ducks to inhabit the area. Surveys were conducted using line-transect and distance sampling methods and were conducted at intervals of 2 weeks. The survey was conducted under the following three categories: the eco-tone and emergent zone, the submergent zone, and the water surface. The survey was conducted along a wetland boundary by observing wild birds. A PC-ord program was used for clustering, and the SAS program was used to analyze the changes in species composition. The data strongly indicates that day length is the main factor for seasonal migration periods, despite the fact that climate change and increasing temperatures are often discussed. Results and conclusions: The indicator species for determining seasons include migrant birds such as Ardea cinerea, Alcedo atthis, Anas penelope, and Poiceps ruficollis, as well as resident birds such as Streptopelia orientalis and Emberiza elegans. Importantly, increases in local individual counts of these species may also serve as indicators. The survey results of seasonal fluctuations in temperate zones shows that spring (April to June), summer (July to September), autumn (October), and winter (November to March) are clearly distinguishable, even though spring and summer seasons tend to overlap, leading to the conclusion that additional research could more clearly identify fluctuation patterns in species composition and abundance in the study area.