• 제목/요약/키워드: Local Strain Approach

검색결과 74건 처리시간 0.027초

국부변형률방법을 이용한 용접시험편의 피로수명 해석 (Fatigue Life Analysis of Butt-welded specimen by Local Strain Approach)

  • 이동형;서정원;구병춘;석창성
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2003년도 추계학술대회 논문집(III)
    • /
    • pp.73-78
    • /
    • 2003
  • The residual stresses and. distortions of structures by welding exert negative effect on the safety of railroad structures. This investigation performs a thermal elasto-plastic analysis using finite element techniques to evaluate residual stresses in butted-welded joint. Considering this initial residual stresses, local stress and strain at the critical location (weld toe) during the loading were analyzed by elastic plastic finite element analysis. Fatigue crack initiation life and fatigue crack propagation life of butt-welded specimen were predicted by local strain approach and Neuber's role and Paris law. It is demonstrated that fatigue life estimates by local strain approach closely approximate the experimental results.

  • PDF

국부변형률방법을 이용한 노치를 지닌 축의 피로수명평가 (Fatigue Life Evaluation of Notched Shaft Using Local Strain Approach)

  • 고승기;김영일;이학주;김완두;이상록
    • 한국자동차공학회논문집
    • /
    • 제4권2호
    • /
    • pp.80-89
    • /
    • 1996
  • Fatigue life of a notched shaft was evaluated in order to estimate the durability and integrity of the notched shaft in design stage. Cumulative fatigue dama- ge analysis was performed using local strain approach based on the assumption that the fatigue life of a notched component is approximately same as that of a smooth specimen is subjected to the same strain at the notched component. In this paper, shafts with different notch root radius of 1, 2㎜ resulting in different values of stress concentration factors were tested under||rotating bending fatigue loading condition. Theoretical stress concentration factor for each notch type was calculated using finite element method. Fatigue life prediction program, FALIPS, written in C language was developed using the strain-life curve, and the local strain approach integrating Neuber's rule, cyclic stress-strain, and hysteresis loop equations. The fatigue life evaluated using the fatigue notch factor obtained from the experimentally determined fatigue strength showed very large scattering with nonconservatism, but the fatigue notch factors derived from the stress concentration factors and Peterson's equation reduced the considerablely accurate fatigue life evaluation within a factor of three.

  • PDF

국부변형률근사법을 이용한 차체 점용접부의 피로수명 예측에 관한 연구 (A Study of Fatigue Life Prediction for Automotive Spot Weldment Using Local Strain Approach)

  • 이송인;권일현;이범준;유효선
    • 대한기계학회논문집A
    • /
    • 제25권2호
    • /
    • pp.220-227
    • /
    • 2001
  • The fatigue crack initiation life is studied on automotive tensile-shear spot weldment made from cold rolled carbon steel(SPC) sheet by using DCPDM and local strain approach. It can be found that the fatigue crack initiation behavior in spot weldment can be definitely detected by DCPDM system. To predict the fatigue life of spot weldment, the local stresses and strains at the potential critical region are estimated by approximate method based on Neubers rule and elastic-plastic FEM analysis. A satisfactory correlation between the predicted life obtained from Local strain approach based on Neubers rule and experimental life can be found in spot weldment within a factor of 2.

국부 변형률 근사를 이용한 원통형 노치시편의 피로균열 발생수명의 예측 (The Prediction of Fatigue Crack Initiation Life of Cylindrical Notch Specimens Using Local Strain Approximation)

  • 임재용;홍성구;이순복
    • 대한기계학회논문집A
    • /
    • 제28권6호
    • /
    • pp.791-798
    • /
    • 2004
  • Fatigue crack initiation lives of round cylindrical notch specimen were investigated. Firstly, local strain approximation methods, such as the modified incremental Neuber's rule and the modified incremental Glinka's equivalent strain energy density(ESED) rule, were used to get multiaxial stress and strain state components at the notch tip. Based on the history of local stress and strain, multiaxial fatigue models were used to obtain fatigue crack initiation lives. Because the solution of Neuber's rule and Glinka's ESED rule make the upper and lower bound of local strain approximations, fatigue crack initiation lives are expected to place between life predictions by two local strain approximations. Experimental data were compared with the fatigue crack initiation life prediction results.

국부변형률근사법을 이용한 차체 점용접부의 피로수명 예측에 관한 연구 (A Study of Fatigue Life Prediction for Automotive Spot Weldment using Local Strain Approach)

  • 이송인;나성훈;나의균;유효선
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.61-66
    • /
    • 2000
  • The fatigue crack initiation life is studied on automotive spot weldment made from cold rolled carbon steel(SPC) sheet by using DCPDM and local strain approach. It can be found that the fatigue crack initiation behavior in spot weldment can be definitely detected by DCPDM system. The local stresses and strains are estimated by elastic-plastic FEM analysis and the alternative approximate method based on Neuber's rule were applied to predict the fatigue life of spot weldment. A satisfactory correlation between the predicted life and experimental life can be found in spot weldment within a factor of 4.

  • PDF

Local & Global 모델을 이용한 용접구조물 변형 해석에 관한 연구 (The Analysis of Welding Deformation in Large Welded Structure by Using Local & Global Model)

  • 장경복;조시훈;장태원
    • Journal of Welding and Joining
    • /
    • 제22권6호
    • /
    • pp.25-29
    • /
    • 2004
  • Some industrial steel structures are composed by components linked by several welding joints to constitute an assembly. The main interest of assembly simulation is to evaluate the global distortion of welded structure. The general method, thermo-elasto-plastic analysis, leads to excessive model size and computation time. In this study, a simplified method called "Local and Global approach" was developed to break down this limit and to provide a accurate solution for distortion. Local and global approach is composed of 3 steps; 1) Local simulation of each welding joint on a dedicated mesh (usually very fine due to high thermal gradients), taking into account for the non linearity of the material properties and the moving heat source. 2) Transfer to the global model of the effects of the welding joints by projection of the plastic strain tensors. 3) Elastic simulation to determine final distortions in global model. The welding deformation test for mock-up structure was performed to verify this approach. The predicted welding distortion by this approach had a good agreement with experiment results.

Damage detection for beam structures based on local flexibility method and macro-strain measurement

  • Hsu, Ting Yu;Liao, Wen I;Hsiao, Shen Yau
    • Smart Structures and Systems
    • /
    • 제19권4호
    • /
    • pp.393-402
    • /
    • 2017
  • Many vibration-based global damage detection methods attempt to extract modal parameters from vibration signals as the main structural features to detect damage. The local flexibility method is one promising method that requires only the first few fundamental modes to detect not only the location but also the extent of damage. Generally, the mode shapes in the lateral degree of freedom are extracted from lateral vibration signals and then used to detect damage for a beam structure. In this study, a new approach which employs the mode shapes in the rotary degree of freedom obtained from the macro-strain vibration signals to detect damage of a beam structure is proposed. In order to facilitate the application of mode shapes in the rotary degree of freedom for beam structures, the local flexibility method is modified and utilized. The proposed rotary approach is verified by numerical and experimental studies of simply supported beams. The results illustrate potential feasibility of the proposed new idea. Compared to the method that uses lateral measurements, the proposed rotary approach seems more robust to noise in the numerical cases considered. The sensor configuration could also be more flexible and customized for a beam structure. Primarily, the proposed approach seems more sensitive to damage when the damage is close to the supports of simply supported beams.

용접잔류응력 이완 및 노치변형률법을 적용한 십자형 필렛용접 이음부의 피로수명 평가 (Fatigue Life Evaluation Based on Welding Residual Stress Relaxation and Notch Strain Approach for Cruciform Welded Joint)

  • 한정우;한승호;신병천;김재훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1103-1108
    • /
    • 2003
  • The fatigue strength of welded joint is influenced by the welding residual stress which is relaxed depending on local stress distributed in vicinity of stress raisers, eg. under cut, overlap and blow hole. To evaluate its fatigue life the geometry of the stress raisers and the welding residual stress should be taken into account. The several methods based on notch strain approach have been proposed in order to consider the two factors above mentioned. These methods, however, have shown considerable differences between analytical and experimental results. It is due to the fact that the amount of the relaxed welding residual stress evaluated by the cyclic stress-strain relationship do not correspond with that occurred in reality. In this paper the residual stress relaxation model based on experimental results was used in order to reduce the discrepancy of the estimated amount of the relaxed welding residual stress. Under an assumption of the superimposition of the relaxed welding residual stress and the local stress, a modified notch strain approach was proposed and verified to the cruciform welded joint.

  • PDF

외경홈을 지닌 C형 시험편의 저주기 피로수명평가 (Low Cycle Fatigue Life Evaluation of External Grooved C-shaped Specimen)

  • 이송인
    • 대한기계학회논문집A
    • /
    • 제21권2호
    • /
    • pp.199-208
    • /
    • 1997
  • A local strain approach was applied to an external single and double grooved C-shaped specimen in order to evaluate and predict the fatigue crack initiation life by using low cycle fatigue properties. The low cycle fatigue properties were determined from the strain-controlled fatigue tests using smooth cylindrical axial specimens. Fatigue crack initiation life was evaluated by a life prediction software, FALIPS, based on the local strain approach. The fatigue life was significantly influenced by the mean stress, and SWT parameter represented the fatigue life effectively. The predicted fatigue crack initiation life was then compared to the experimental fatigue life evaluated from the C-shaped fatigue test specimens. A good correlation was found between the experimental and predicted fatigue lives within factors of 2 and 4 for the single and double grooved C-shaped specimens respectively. Also, experimental fatigue life of the double grooved specimen was 10-12 times longer than that of the single grooved specimen.

국부변형률 방법을 이용한 용접후열처리 전후 시편의 피로수명 해석 (Fatigue Life Analysis of Butt-welded Joint with and without Postweld Heat Treatment by Local Strain Approach)

  • 이동형;서정원;구병춘;석창성
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1086-1091
    • /
    • 2003
  • The problem of residual stresses and fatigue behavior in welded structures is the main concern of welding research fields. The residual stresses and distortions of structures by welding exert negative effect on the safety of mechanical structures. Postweld heat treatment is usually carried out to relieve this residual stresses of welded joints. In this paper the influence of postweld heat treatment on fatigue life of butt-welded joint was investigated. To predict the effect of PWHT, an analytical model is developed by finite element and local strain approach and the result of fatigue life analysis is compared to experimental results. It is demonstrated that fatigue life estimates closely approximate the experimental results and PWHT provides some increase of fatigue lives in long-life fatigue region and no increase in short-life fatigue region because of the residual stress relaxation under tensile loads.

  • PDF