• Title/Summary/Keyword: Local Images

Search Result 1,364, Processing Time 0.033 seconds

Motion Recognitions Based on Local Basis Images Using Independent Component Analysis (독립성분분석을 이용한 국부기저영상 기반 동작인식)

  • Cho, Yong-Hyun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.5
    • /
    • pp.617-623
    • /
    • 2008
  • This paper presents a human motion recognition method using both centroid shift and local basis images. The centroid shift based on 1st moment balance technique is applied to get the robust motion images against position or size changes, the extraction of local basis images based on independent component analysis(ICA) is also applied to find a set of statistically independent motion features, which is included in each motions. Especially, ICA of fixed-point(FP) algorithm based on Newton method is used for being quick to extract a local basis images of motions. The proposed method has been applied to the problem for recognizing the 160(1 person * 10 animals * 16 motions) sign language motion images of 240*215 pixels. The 3 distances such as city-block, Euclidean, negative angle are used as measures when match the probe images to the nearest gallery images. The experimental results show that the proposed method has a superior recognition performances(speed, rate) than the method using local eigen images and the method using local basis images without centroid shift respectively.

Efficient Use of MPEG-7 Edge Histogram Descriptor

  • Won, Chee-Sun;Park, Dong-Kwon;Park, Soo-Jun
    • ETRI Journal
    • /
    • v.24 no.1
    • /
    • pp.23-30
    • /
    • 2002
  • MPEG-7 Visual Standard specifies a set of descriptors that can be used to measure similarity in images or video. Among them, the Edge Histogram Descriptor describes edge distribution with a histogram based on local edge distribution in an image. Since the Edge Histogram Descriptor recommended for the MPEG-7 standard represents only local edge distribution in the image, the matching performance for image retrieval may not be satisfactory. This paper proposes the use of global and semi-local edge histograms generated directly from the local histogram bins to increase the matching performance. Then, the global, semi-global, and local histograms of images are combined to measure the image similarity and are compared with the MPEG-7 descriptor of the local-only histogram. Since we exploit the absolute location of the edge in the image as well as its global composition, the proposed matching method can retrieve semantically similar images. Experiments on MPEG-7 test images show that the proposed method yields better retrieval performance by an amount of 0.04 in ANMRR, which shows a significant difference in visual inspection.

  • PDF

Visual Attention Detection By Adaptive Non-Local Filter

  • Anh, Dao Nam
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.1
    • /
    • pp.49-54
    • /
    • 2016
  • Regarding global and local factors of a set of features, a given single image or multiple images is a common approach in image processing. This paper introduces an application of an adaptive version of non-local filter whose original version searches non-local similarity for removing noise. Since most images involve texture partner in both foreground and background, extraction of signified regions with texture is a challenging task. Aiming to the detection of visual attention regions for images with texture, we present the contrast analysis of image patches located in a whole image but not nearby with assistance of the adaptive filter for estimation of non-local divergence. The method allows extraction of signified regions with texture of images of wild life. Experimental results for a benchmark demonstrate the ability of the proposed method to deal with the mentioned challenge.

Contrast Enhancement of Blurred Images Using Fuzzy Logic Concepts (퍼지 논리를 이용한 흐린 영상의 콘트라스트 향상)

  • 박중조;김경민;박귀태
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.8
    • /
    • pp.181-191
    • /
    • 1994
  • A new method for enhancing blurred images using fuzzy logic concepts is proposed. Blurred images contain blurred boundaries which make it difficult to detect edges and segment areas in images. In order to sharpen blurred edges local contrast information of an image and erosion/dilation properties of local min/max operations are used in which local min/max operations are fuzzy logic operations. so that given images are transformed to fuzzy images and then these operations are applied on them. In this method the sharpening operation can be iteratively applied to the image to get better deblurring effect and gray-scale "salt-and-pepper" noises are suppressed. the efficiency of our algorithm is demonstrated through experimental results obtained with artificially-made blurred images and real blurred images.

  • PDF

Face Recognition Robust to Local Distortion Using Modified ICA Basis Image

  • Kim Jong-Sun;Yi June-Ho
    • Proceedings of the Korea Institutes of Information Security and Cryptology Conference
    • /
    • 2006.06a
    • /
    • pp.251-257
    • /
    • 2006
  • The performance of face recognition methods using subspace projection is directly related to the characteristics of their basis images, especially in the cases of local distortion or partial occlusion. In order for a subspace projection method to be robust to local distortion and partial occlusion, the basis images generated by the method should exhibit a part-based local representation. We propose an effective part-based local representation method named locally salient ICA (LS-ICA) method for face recognition that is robust to local distortion and partial occlusion. The LS-ICA method only employs locally salient information from important facial parts in order to maximize the benefit of applying the idea of 'recognition by parts.' It creates part-based local basis images by imposing additional localization constraint in the process of computing ICA architecture I basis images. We have contrasted the LS-ICA method with other part-based representations such as LNMF (Localized Non-negative Matrix Factorization)and LFA (Local Feature Analysis). Experimental results show that the LS-ICA method performs better than PCA, ICA architecture I, ICA architecture II, LFA, and LNMF methods, especially in the cases of partial occlusions and local distortion

  • PDF

GAN-Based Local Lightness-Aware Enhancement Network for Underexposed Images

  • Chen, Yong;Huang, Meiyong;Liu, Huanlin;Zhang, Jinliang;Shao, Kaixin
    • Journal of Information Processing Systems
    • /
    • v.18 no.4
    • /
    • pp.575-586
    • /
    • 2022
  • Uneven light in real-world causes visual degradation for underexposed regions. For these regions, insufficient consideration during enhancement procedure will result in over-/under-exposure, loss of details and color distortion. Confronting such challenges, an unsupervised low-light image enhancement network is proposed in this paper based on the guidance of the unpaired low-/normal-light images. The key components in our network include super-resolution module (SRM), a GAN-based low-light image enhancement network (LLIEN), and denoising-scaling module (DSM). The SRM improves the resolution of the low-light input images before illumination enhancement. Such design philosophy improves the effectiveness of texture details preservation by operating in high-resolution space. Subsequently, local lightness attention module in LLIEN effectively distinguishes unevenly illuminated areas and puts emphasis on low-light areas, ensuring the spatial consistency of illumination for locally underexposed images. Then, multiple discriminators, i.e., global discriminator, local region discriminator, and color discriminator performs assessment from different perspectives to avoid over-/under-exposure and color distortion, which guides the network to generate images that in line with human aesthetic perception. Finally, the DSM performs noise removal and obtains high-quality enhanced images. Both qualitative and quantitative experiments demonstrate that our approach achieves favorable results, which indicates its superior capacity on illumination and texture details restoration.

Multi-scale Local Difference Directional Number Pattern for Group-housed Pigs Recognition

  • Huang, Weijia;Zhu, Weixing;Zhang, Zhengyan;Guo, Yizheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.9
    • /
    • pp.3186-3203
    • /
    • 2021
  • In this paper, a multi-scale local difference directional number (MLDDN) pattern is proposed for pig identification. Firstly, the color images of individual pig are converted into grey images by the most significant bits (MSB) quantization, which makes the grey values have better discrimination. Then, Gabor amplitude and phase responses on different scales are obtained by convoluting the grey images with Gabor masks. Next, by calculating the main difference of local edge directions instead of traditionally edge information, the directional numbers of Gabor amplitude and phase responses are encoded. Finally, the block histograms of the encoded images are concatenated on each scale, and the maximum pooling is adopted on different scales to avoid the high feature dimension. Experimental results on two pigsties show that MLDDN impressively outperforms the other widely used local descriptors.

Texture Feature Extractor Based on 2D Local Fourier Transform (2D 지역푸리에변환 기반 텍스쳐 특징 서술자에 관한 연구)

  • Saipullah, Khairul Muzzammil;Peng, Shao-Hu;Kim, Hyun-Soo;Kim, Deok-Hwan
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.04a
    • /
    • pp.106-109
    • /
    • 2009
  • Recently, image matching becomes important in Computer Aided Diagnosis (CAD) due to the huge amount of medical images. Specially, texture feature is useful in medical image matching. However, texture features such as co-occurrence matrices can't describe well the spatial distribution of gray levels of the neighborhood pixels. In this paper we propose a frequency domain-based texture feature extractor that describes the local spatial distribution for medical image retrieval. This method is based on 2D Local Discrete Fourier transform of local images. The features are extracted from local Fourier histograms that generated by four Fourier images. Experimental results using 40 classes Brodatz textures and 1 class of Emphysema CT images show that the average accuracy of retrieval is about 93%.

Face Recognition Robust to Local Distortion using Modified ICA Basis Images (개선된 ICA 기저영상을 이용한 국부적 왜곡에 강인한 얼굴인식)

  • Kim Jong-Sun;Yi June-Ho
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.5
    • /
    • pp.481-488
    • /
    • 2006
  • The performance of face recognition methods using subspace projection is directly related to the characteristics of their basis images, especially in the cases of local distortion or partial occlusion. In order for a subspace projection method to be robust to local distortion and partial occlusion, the basis images generated by the method should exhibit a part-based local representation. We propose an effective part-based local representation method named locally salient ICA (LS-ICA) method for face recognition that is robust to local distortion and partial occlusion. The LS-ICA method only employs locally salient information from important facial parts in order to maximize the benefit of applying the idea of 'recognition by parts.' It creates part-based local basis images by imposing additional localization constraint in the process of computing ICA architecture I basis images. We have contrasted the LS-ICA method with other part-based representations such as LNMF (Localized Non-negative Matrix Factorization) and LFA (Local Feature Analysis). Experimental results show that the LS-ICA method performs better than PCA, ICA architecture I, ICA architectureII, LFA, and LNMF methods, especially in the cases of partial occlusions and local distortions.

Three-dimensional Head Tracking Using Adaptive Local Binary Pattern in Depth Images

  • Kim, Joongrock;Yoon, Changyong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.16 no.2
    • /
    • pp.131-139
    • /
    • 2016
  • Recognition of human motions has become a main area of computer vision due to its potential human-computer interface (HCI) and surveillance. Among those existing recognition techniques for human motions, head detection and tracking is basis for all human motion recognitions. Various approaches have been tried to detect and trace the position of human head in two-dimensional (2D) images precisely. However, it is still a challenging problem because the human appearance is too changeable by pose, and images are affected by illumination change. To enhance the performance of head detection and tracking, the real-time three-dimensional (3D) data acquisition sensors such as time-of-flight and Kinect depth sensor are recently used. In this paper, we propose an effective feature extraction method, called adaptive local binary pattern (ALBP), for depth image based applications. Contrasting to well-known conventional local binary pattern (LBP), the proposed ALBP cannot only extract shape information without texture in depth images, but also is invariant distance change in range images. We apply the proposed ALBP for head detection and tracking in depth images to show its effectiveness and its usefulness.