윈도우 기반의 영상처리는 전체 영상처리 분야에 있어서 기본이 되는 분야이다. 이러한 윈도우 기반의 영상처리는 처리해야 할 데이터와 연산이 매우 많은 편이기 때문에 범용 컴퓨터 구조에서 소프트웨어 프로그램을 사용하여 윈도우 기반 영상처리에서 필요로 하는 모든 연산을 실시간으로 수행하기 힘들다. 본 논문에서는 FPGA(Field Programmable Gate Array)를 사용하여 윈도우 기반 영상처리를 실시간으로 수행할 수 있는 병렬 하드웨어 구조를 제안하고자 한다. 또한 제안한 구조를 통해 VHDL(VHSIC Hardware Description Language)을 이용하여 윈도우 기반의 영상처리 중 하나인 동적 문턱치화(dynamic thresholding) 회로와 국부 히스토그램 평활화(local histogram equalization) 회로를 설계하고 FPGA로 해당 회로를 구현할 것이다. 구현된 회로의 성능 측정도 다루어 진다.
본 연구에서는 음성인식기 성능향상을 위한 영상기반 음성구간 검출방법을 제안한다. 기존의 광류기반 방법은 조도변화에 대응하지 못하고 연산량이 많아서 이동형 플렛홈에 적용되는 스마트 기기에 적용하는데 어려움이 있고, 카오스 이론 기반 방법은 조도변화에 강인하지만 차량 움직임 및 입술 검출의 부정확성으로 인해 발생하는 오검출이 발생하는 문제점이 있다. 본 연구에서는 기존 영상기반 음성구간 검출 알고리즘의 문제점을 해결하기 위해 지역 분산 히스토그램(Local Variance Histogram, LVH)과 적응적 문턱값 추정 방법을 이용한 음성구간 검출 알고리즘을 제안한다. 제안된 방법은 조도 변화에 따른 픽셀 변화에 강인하고 연산속도가 빠르며 적응적 문턱값을 사용하여 조도변화 및 움직임이 큰 차량 운전자의 발화를 강인하게 검출할 수 있다. 이동중인 차량에서 촬영한 운전자의 동영상을 이용하여 성능을 측정한 결과 제안한 방법이 기존의 방법에 비하여 성능이 우수함을 확인하였다.
본 논문에서는 무인항공기용 실시간 장애물 탐지 및 회피 경로 생성 알고리즘을 제안한다. 2-D Lidar를 이용하여 장애물을 검출하고, 검출 정보는 지역 회피 경로 생성을 위한 실시간 히스토그램 생성과 목표 지점까지 전역 회피 경로 생성을 위해 사용되는 2-D SLAM 지도를 생성하는데 사용된다. 지역 회피 경로 생성을 위한 VFH 알고리즘은 장애물들이 벡터 방향과 거리에 따라 얼마큼 분포되어 있는지에 대한 실시간 히스토그램을 생성하고, 이 히스토그램은 근접 장애물 검출 시 지역 회피 경로를 생성하는데 사용된다. 기존의 $RRT^*-Smart$ 알고리즘의 한계로 인해 Modified $RRT^*-Smart$ 알고리즘을 제안한다. 이 알고리즘은 새로운 노드가 생길 때 목표 지점과의 직선 경로 여부를 판단하고, 목표 지점 방향으로 생성되도록 방향성을 부여하며, 노드의 길이를 확률적으로 나누어 일정한 단위의 길이가 아닌 랜덤 단위의 길이로 퍼뜨림으로써 보다 적은 비용으로 목표 지점까지의 효율적인 전역 회피경로를 생성한다. 본 논문에서는 효율적인 회피경로를 생성하여 회피 기동함을 다양한 시뮬레이션 실험환경을 통해 검증하였다.
International Journal of Computer Science & Network Security
/
제22권1호
/
pp.1-6
/
2022
Exploration has always been an instinct of humans, and underwater life is as fascinating as it seems. So, for studying flora and fauna below water, there is a need for high-quality images. However, the underwater images tend to be of impaired quality due to various factors, which calls for improved and enhanced underwater images. There are various Histogram Equalization (HE) based techniques which could aid in solving these issues. Classifying the HE methods broadly, there is Global Histogram Equalization (GHE), Mean Brightness Preserving HE (MBPHE), Bin Modified HE (BMHE), and Local HE (LHE). Each of these HE extensions have their own pros and cons and thus, by considering them we have considered BBHE, CLAHE, BPDHE, BPDFHE, and DSIHE enhancement algorithms, which are based on Mean Brightness Preserving HE and Local HE, for this study. The performance is evaluated with non-reference performance measures like Entropy, UCIQE, UICM, and UIQM. In this study, we apply the enhancement algorithms on 300 images from the UIEB benchmark dataset and then apply the techniques of cascading fusion on the best-performing algorithms.
본 논문에서는 Local Binary Pattern 히스토그램의 템플릿 매칭을 이용한 얼굴 표정 인식에서 인식률을 높이는 방법을 제안한다. 이 방법에서, 주어진 얼굴 영상은 작은 크기의 블록으로 분할되고 각 블록에서 구해진 LBP 히스토그램은 블록 특징으로 사용된다. 입력 영상에서의 블록 특징과 모델의 해당블록 특징 사이에서 블록 상이도가 계산된다. 주어진 영상과 모델 영상 사이의 영상 상이도는 블록 상이도의 가중 합으로 계산된다. 기존의 방법들에서는 직관에 따른 블록 가중치를 사용하는데 본 논문에서는 블록 가중치를 트레이닝 샘플들로부터 최적화를 통해서 구하는 방법을 제안하고 있다. 실험을 통해서 제안된 방법이 기존의 방법보다 우수함을 보인다.
영상에서 에지검출은 영상분할 및 물체인식 등을 위한 영상처리의 전처리 과정으로 매우 중요한 단계이다. 본 논문에서는 영상에서 에지검출을 위해 웨이블렛 기반 하에서 로컬 히스토그램 분석을 이용한 새로운 에지검출법을 제안하고자 한다. 지금까지 웨이블렛 기반 에지검출은 수직과 수평성분으로부터 기울기 벡터를 구하고 임계값은 주로 글로벌 히스토그램 임계값 처리를 통하여 구하였다. 본 논문에서는 수직과 수평성분 외에 대각선 성분을 고려하여 기울기 벡터를 구하고 일반적인 영상에 적합한 로컬 히스토그램 임계값처리를 통하여 임계값을 구하였다. 제안된 에지검출법의 성능 평가를 위해 기존의 Sobel 방법, Canny 방법, Scale Multiplication 방법 그리고 Mallat의 웨이블렛 방법 등과 비교하였다. 영상실험 결과 제안된 방법은 잡음이 많고 적음에 관계없이 에지검출이 뛰어난 반면에 Canny 방법과 Sobel 방영은 잡음이 많을수록 급격하게 성능이 떨어짐을 알 수 있었다. 그리고 제안된 방법은 Scale Multiplication 방법과 Mallat 방법보다 좋은 성능을 갖고 있음을 알 수 있었다.
Vu, Thi Ly;Do, Trung Dung;Jin, Cheng-Bin;Li, Shengzhe;Nguyen, Van Huan;Kim, Hakil;Lee, Chongho
Journal of Computing Science and Engineering
/
제9권1호
/
pp.29-38
/
2015
Human action recognition has become an important research topic in computer vision area recently due to many applications in the real world, such as video surveillance, video retrieval, video analysis, and human-computer interaction. The goal of this paper is to evaluate descriptors which have recently been used in action recognition, namely Histogram of Oriented Gradient (HOG) and Histogram of Optical Flow (HOF). This paper also proposes new descriptors to represent the change of points within each part of a human body, caused by actions named as Histogram of Changing Points (HCP) and so-called Average Speed (AS) which measures the average speed of actions. The descriptors are combined to build a strong descriptor to represent human actions by modeling the information about appearance, local motion, and changes on each part of the body, as well as motion speed. The effectiveness of these new descriptors is evaluated in the experiments on KTH and Hollywood datasets.
본 대부분의 비디오는 대용량의 장시간 데이터로서 비디오 시청자들이 전반적인 내용을 이해하기에는 충분하지 못하다. 본 논문에서는 이러한 문제점을 해결하기 위하여 효율적인 장면 전환 검출 방법과 새로운 샷 클러스터링을 이용한 비디오 개요 추출 방법을 제시한다. 장면전환 검출 방법은 컬러 히스토그램과 $\chi2$ 히스토그램을 합성한 방법을 이용하여 추출하도록 한다. 클러스터링은 지역적 히스토그램의 차이값을 이용한 유사성 측정과 새로운 샷 병합 알고리즘을 통해 수행하도록 한다. 또한 실제 TV 방송 프로그램을 대상으로 비디오 개요 추출 실험 결과를 제시한다.
대부분의 비디오는 대용량의 장시간 데이터로서 비디오 시청자들이 전반적인 내용을 이해하기에는 충분하지 못하다. 본 논문에서는 이러한 문제점을 해결하기 위하여 효율적인 장면 전환 검출 방법과 새로운 샷 클러스터링을 이용한 비디오 개요 추출 방법을 제시한다. 장면전환 검출 방법은 컬러 히스토그램과 ${\chi}^2$ 히스토그램을 합성한 방법을 이용하여 추출하도록 한다. 클러스터링은 지역적 히스토그램의 차이값을 이용한 유사성 측정과 새로운 샷 병합 알고리즘을 통해 수행하도록 한다. 또한 실제 TV 방송 프로그램을 대상으로 비디오 개요 추출 실험 결과를 제시한다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제12권12호
/
pp.6000-6017
/
2018
This paper presents a new descriptor, named Histograms of Prominent Edge Directions (HPED), for the recognition of facial expressions in a person-independent environment. In this paper, we raise the issue of sampling error in generating the code-histogram from spatial regions of the face image, as observed in the existing descriptors. HPED describes facial appearance changes based on the statistical distribution of the top two prominent edge directions (i.e., primary and secondary direction) captured over small spatial regions of the face. Compared to existing descriptors, HPED uses a smaller number of code-bins to describe the spatial regions, which helps avoid sampling error despite having fewer samples while preserving the valuable spatial information. In contrast to the existing Histogram of Oriented Gradients (HOG) that uses the histogram of the primary edge direction (i.e., gradient orientation) only, we additionally consider the histogram of the secondary edge direction, which provides more meaningful shape information related to the local texture. Experiments on popular facial expression datasets demonstrate the superior performance of the proposed HPED against existing descriptors in a person-independent environment.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.