• 제목/요약/키워드: Local Histogram

검색결과 247건 처리시간 0.023초

실시간 윈도우 기반 영상 처리를 위한 병렬 하드웨어 구조의 FPGA 구현 (An FPGA Implementation of Parallel Hardware Architecture for the Real-time Window-based Image Processing)

  • 진승훈;조정욱;권기호;전재욱
    • 정보처리학회논문지B
    • /
    • 제13B권3호
    • /
    • pp.223-230
    • /
    • 2006
  • 윈도우 기반의 영상처리는 전체 영상처리 분야에 있어서 기본이 되는 분야이다. 이러한 윈도우 기반의 영상처리는 처리해야 할 데이터와 연산이 매우 많은 편이기 때문에 범용 컴퓨터 구조에서 소프트웨어 프로그램을 사용하여 윈도우 기반 영상처리에서 필요로 하는 모든 연산을 실시간으로 수행하기 힘들다. 본 논문에서는 FPGA(Field Programmable Gate Array)를 사용하여 윈도우 기반 영상처리를 실시간으로 수행할 수 있는 병렬 하드웨어 구조를 제안하고자 한다. 또한 제안한 구조를 통해 VHDL(VHSIC Hardware Description Language)을 이용하여 윈도우 기반의 영상처리 중 하나인 동적 문턱치화(dynamic thresholding) 회로와 국부 히스토그램 평활화(local histogram equalization) 회로를 설계하고 FPGA로 해당 회로를 구현할 것이다. 구현된 회로의 성능 측정도 다루어 진다.

음성인식기 성능 향상을 위한 영상기반 음성구간 검출 및 적응적 문턱값 추정 (Visual Voice Activity Detection and Adaptive Threshold Estimation for Speech Recognition)

  • 송태엽;이경선;김성수;이재원;고한석
    • 한국음향학회지
    • /
    • 제34권4호
    • /
    • pp.321-327
    • /
    • 2015
  • 본 연구에서는 음성인식기 성능향상을 위한 영상기반 음성구간 검출방법을 제안한다. 기존의 광류기반 방법은 조도변화에 대응하지 못하고 연산량이 많아서 이동형 플렛홈에 적용되는 스마트 기기에 적용하는데 어려움이 있고, 카오스 이론 기반 방법은 조도변화에 강인하지만 차량 움직임 및 입술 검출의 부정확성으로 인해 발생하는 오검출이 발생하는 문제점이 있다. 본 연구에서는 기존 영상기반 음성구간 검출 알고리즘의 문제점을 해결하기 위해 지역 분산 히스토그램(Local Variance Histogram, LVH)과 적응적 문턱값 추정 방법을 이용한 음성구간 검출 알고리즘을 제안한다. 제안된 방법은 조도 변화에 따른 픽셀 변화에 강인하고 연산속도가 빠르며 적응적 문턱값을 사용하여 조도변화 및 움직임이 큰 차량 운전자의 발화를 강인하게 검출할 수 있다. 이동중인 차량에서 촬영한 운전자의 동영상을 이용하여 성능을 측정한 결과 제안한 방법이 기존의 방법에 비하여 성능이 우수함을 확인하였다.

무인항공기용 실시간 장애물 탐지 및 회피 경로 생성 알고리즘 (Real-time Obstacle Detection and Avoidance Path Generation Algorithm for UAV)

  • 고하윤;백중환;최형식
    • 한국항행학회논문지
    • /
    • 제22권6호
    • /
    • pp.623-629
    • /
    • 2018
  • 본 논문에서는 무인항공기용 실시간 장애물 탐지 및 회피 경로 생성 알고리즘을 제안한다. 2-D Lidar를 이용하여 장애물을 검출하고, 검출 정보는 지역 회피 경로 생성을 위한 실시간 히스토그램 생성과 목표 지점까지 전역 회피 경로 생성을 위해 사용되는 2-D SLAM 지도를 생성하는데 사용된다. 지역 회피 경로 생성을 위한 VFH 알고리즘은 장애물들이 벡터 방향과 거리에 따라 얼마큼 분포되어 있는지에 대한 실시간 히스토그램을 생성하고, 이 히스토그램은 근접 장애물 검출 시 지역 회피 경로를 생성하는데 사용된다. 기존의 $RRT^*-Smart$ 알고리즘의 한계로 인해 Modified $RRT^*-Smart$ 알고리즘을 제안한다. 이 알고리즘은 새로운 노드가 생길 때 목표 지점과의 직선 경로 여부를 판단하고, 목표 지점 방향으로 생성되도록 방향성을 부여하며, 노드의 길이를 확률적으로 나누어 일정한 단위의 길이가 아닌 랜덤 단위의 길이로 퍼뜨림으로써 보다 적은 비용으로 목표 지점까지의 효율적인 전역 회피경로를 생성한다. 본 논문에서는 효율적인 회피경로를 생성하여 회피 기동함을 다양한 시뮬레이션 실험환경을 통해 검증하였다.

Blending of Contrast Enhancement Techniques for Underwater Images

  • Abin, Deepa;Thepade, Sudeep D.;Maitre, Amulya R.
    • International Journal of Computer Science & Network Security
    • /
    • 제22권1호
    • /
    • pp.1-6
    • /
    • 2022
  • Exploration has always been an instinct of humans, and underwater life is as fascinating as it seems. So, for studying flora and fauna below water, there is a need for high-quality images. However, the underwater images tend to be of impaired quality due to various factors, which calls for improved and enhanced underwater images. There are various Histogram Equalization (HE) based techniques which could aid in solving these issues. Classifying the HE methods broadly, there is Global Histogram Equalization (GHE), Mean Brightness Preserving HE (MBPHE), Bin Modified HE (BMHE), and Local HE (LHE). Each of these HE extensions have their own pros and cons and thus, by considering them we have considered BBHE, CLAHE, BPDHE, BPDFHE, and DSIHE enhancement algorithms, which are based on Mean Brightness Preserving HE and Local HE, for this study. The performance is evaluated with non-reference performance measures like Entropy, UCIQE, UICM, and UIQM. In this study, we apply the enhancement algorithms on 300 images from the UIEB benchmark dataset and then apply the techniques of cascading fusion on the best-performing algorithms.

블록가중치의 최적화를 통해 개선된 LBP기반의 표정인식 (An Improved LBP-based Facial Expression Recognition through Optimization of Block Weights)

  • 박성천;구자영
    • 한국컴퓨터정보학회논문지
    • /
    • 제14권11호
    • /
    • pp.73-79
    • /
    • 2009
  • 본 논문에서는 Local Binary Pattern 히스토그램의 템플릿 매칭을 이용한 얼굴 표정 인식에서 인식률을 높이는 방법을 제안한다. 이 방법에서, 주어진 얼굴 영상은 작은 크기의 블록으로 분할되고 각 블록에서 구해진 LBP 히스토그램은 블록 특징으로 사용된다. 입력 영상에서의 블록 특징과 모델의 해당블록 특징 사이에서 블록 상이도가 계산된다. 주어진 영상과 모델 영상 사이의 영상 상이도는 블록 상이도의 가중 합으로 계산된다. 기존의 방법들에서는 직관에 따른 블록 가중치를 사용하는데 본 논문에서는 블록 가중치를 트레이닝 샘플들로부터 최적화를 통해서 구하는 방법을 제안하고 있다. 실험을 통해서 제안된 방법이 기존의 방법보다 우수함을 보인다.

영상에서 웨이블렛 기반 로컬 히스토그램 분석을 이용한 에지검출 (Wavelet-Based Edge Detection Using Local Histogram Analysis in Images)

  • 박민준;권민준;김기훈;심한슬;김동욱;임동훈
    • 응용통계연구
    • /
    • 제24권2호
    • /
    • pp.359-371
    • /
    • 2011
  • 영상에서 에지검출은 영상분할 및 물체인식 등을 위한 영상처리의 전처리 과정으로 매우 중요한 단계이다. 본 논문에서는 영상에서 에지검출을 위해 웨이블렛 기반 하에서 로컬 히스토그램 분석을 이용한 새로운 에지검출법을 제안하고자 한다. 지금까지 웨이블렛 기반 에지검출은 수직과 수평성분으로부터 기울기 벡터를 구하고 임계값은 주로 글로벌 히스토그램 임계값 처리를 통하여 구하였다. 본 논문에서는 수직과 수평성분 외에 대각선 성분을 고려하여 기울기 벡터를 구하고 일반적인 영상에 적합한 로컬 히스토그램 임계값처리를 통하여 임계값을 구하였다. 제안된 에지검출법의 성능 평가를 위해 기존의 Sobel 방법, Canny 방법, Scale Multiplication 방법 그리고 Mallat의 웨이블렛 방법 등과 비교하였다. 영상실험 결과 제안된 방법은 잡음이 많고 적음에 관계없이 에지검출이 뛰어난 반면에 Canny 방법과 Sobel 방영은 잡음이 많을수록 급격하게 성능이 떨어짐을 알 수 있었다. 그리고 제안된 방법은 Scale Multiplication 방법과 Mallat 방법보다 좋은 성능을 갖고 있음을 알 수 있었다.

Improvement of Accuracy for Human Action Recognition by Histogram of Changing Points and Average Speed Descriptors

  • Vu, Thi Ly;Do, Trung Dung;Jin, Cheng-Bin;Li, Shengzhe;Nguyen, Van Huan;Kim, Hakil;Lee, Chongho
    • Journal of Computing Science and Engineering
    • /
    • 제9권1호
    • /
    • pp.29-38
    • /
    • 2015
  • Human action recognition has become an important research topic in computer vision area recently due to many applications in the real world, such as video surveillance, video retrieval, video analysis, and human-computer interaction. The goal of this paper is to evaluate descriptors which have recently been used in action recognition, namely Histogram of Oriented Gradient (HOG) and Histogram of Optical Flow (HOF). This paper also proposes new descriptors to represent the change of points within each part of a human body, caused by actions named as Histogram of Changing Points (HCP) and so-called Average Speed (AS) which measures the average speed of actions. The descriptors are combined to build a strong descriptor to represent human actions by modeling the information about appearance, local motion, and changes on each part of the body, as well as motion speed. The effectiveness of these new descriptors is evaluated in the experiments on KTH and Hollywood datasets.

대용량 비디오 데이터베이스 구축을 위하여 장면전환 검출과 샷 클러스터링을 이용한 비디오 개요 추출 (Video Abstracting Using Scene Change Detection and Shot Clustering for Construction of Efficient Video Database)

  • 신성윤;표성배
    • 한국컴퓨터정보학회논문지
    • /
    • 제11권2호
    • /
    • pp.111-119
    • /
    • 2006
  • 본 대부분의 비디오는 대용량의 장시간 데이터로서 비디오 시청자들이 전반적인 내용을 이해하기에는 충분하지 못하다. 본 논문에서는 이러한 문제점을 해결하기 위하여 효율적인 장면 전환 검출 방법과 새로운 샷 클러스터링을 이용한 비디오 개요 추출 방법을 제시한다. 장면전환 검출 방법은 컬러 히스토그램과 $\chi2$ 히스토그램을 합성한 방법을 이용하여 추출하도록 한다. 클러스터링은 지역적 히스토그램의 차이값을 이용한 유사성 측정과 새로운 샷 병합 알고리즘을 통해 수행하도록 한다. 또한 실제 TV 방송 프로그램을 대상으로 비디오 개요 추출 실험 결과를 제시한다.

  • PDF

대용량 비디오 데이터베이스 구축을 위한 비디오 개요 추출 (Video Abstracting Construction of Efficient Video Database)

  • 신성윤;표성배;이양원
    • 한국컴퓨터정보학회지
    • /
    • 제14권1호
    • /
    • pp.255-264
    • /
    • 2006
  • 대부분의 비디오는 대용량의 장시간 데이터로서 비디오 시청자들이 전반적인 내용을 이해하기에는 충분하지 못하다. 본 논문에서는 이러한 문제점을 해결하기 위하여 효율적인 장면 전환 검출 방법과 새로운 샷 클러스터링을 이용한 비디오 개요 추출 방법을 제시한다. 장면전환 검출 방법은 컬러 히스토그램과 ${\chi}^2$ 히스토그램을 합성한 방법을 이용하여 추출하도록 한다. 클러스터링은 지역적 히스토그램의 차이값을 이용한 유사성 측정과 새로운 샷 병합 알고리즘을 통해 수행하도록 한다. 또한 실제 TV 방송 프로그램을 대상으로 비디오 개요 추출 실험 결과를 제시한다.

  • PDF

Person-Independent Facial Expression Recognition with Histograms of Prominent Edge Directions

  • Makhmudkhujaev, Farkhod;Iqbal, Md Tauhid Bin;Arefin, Md Rifat;Ryu, Byungyong;Chae, Oksam
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권12호
    • /
    • pp.6000-6017
    • /
    • 2018
  • This paper presents a new descriptor, named Histograms of Prominent Edge Directions (HPED), for the recognition of facial expressions in a person-independent environment. In this paper, we raise the issue of sampling error in generating the code-histogram from spatial regions of the face image, as observed in the existing descriptors. HPED describes facial appearance changes based on the statistical distribution of the top two prominent edge directions (i.e., primary and secondary direction) captured over small spatial regions of the face. Compared to existing descriptors, HPED uses a smaller number of code-bins to describe the spatial regions, which helps avoid sampling error despite having fewer samples while preserving the valuable spatial information. In contrast to the existing Histogram of Oriented Gradients (HOG) that uses the histogram of the primary edge direction (i.e., gradient orientation) only, we additionally consider the histogram of the secondary edge direction, which provides more meaningful shape information related to the local texture. Experiments on popular facial expression datasets demonstrate the superior performance of the proposed HPED against existing descriptors in a person-independent environment.