• Title/Summary/Keyword: Local Computing

Search Result 533, Processing Time 0.02 seconds

Small Bands Enclosing a Set of Spherical Points and Local Accessibility Problems in NC Machining (구상의 점 집합을 포함하는 소밴드와 수치제어 절삭가공의 접근성 문제)

  • Ha, Jong-Seong
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.7
    • /
    • pp.2188-2195
    • /
    • 2000
  • This paper deals with the problem of determining small-bands enclosing a given set of points on the sphere. The small-band is a spherical region, whose boundary is composed of two circles, and which does not contain any great circle. It is a kind of domains that is derived from formalizing the local accessibility problems for 3-axis NC machining into sperical containment problems so as to avoid the grouping. It also can be generated in 4- and 5-axis machine. When a set of points U and the size of a great-band are given, the methods for computing a feasible band and all feasible bands enclosing U in O(n) and O(n log n) time have been suggested, respectively. The methods can be applied into the cases of small bands since the solution region may contain holes. In this paper, we concentrate on the method for determining the smallest small-band enclosing U and suggest an O(n long n) time algorithm, where n is the number of points on the sphere.

  • PDF

Robust Nonparametric Regression Method using Rank Transformation

    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.2
    • /
    • pp.574-574
    • /
    • 2000
  • Consider the problem of estimating regression function from a set of data which is contaminated by a long-tailed error distribution. The linear smoother is a kind of a local weighted average of response, so it is not robust against outliers. The kernel M-smoother and the lowess attain robustness against outliers by down-weighting outliers. However, the kernel M-smoother and the lowess requires the iteration for computing the robustness weights, and as Wang and Scott(1994) pointed out, the requirement of iteration is not a desirable property. In this article, we propose the robust nonparametic regression method which does not require the iteration. Robustness can be achieved not only by down-weighting outliers but also by transforming outliers. The rank transformation is a simple procedure where the data are replaced by their corresponding ranks. Iman and Conover(1979) showed the fact that the rank transformation is a robust and powerful procedure in the linear regression. In this paper, we show that we can also use the rank transformation to nonparametric regression to achieve the robustness.

Robust Nonparametric Regression Method using Rank Transformation

  • Park, Dongryeon
    • Communications for Statistical Applications and Methods
    • /
    • v.7 no.2
    • /
    • pp.575-583
    • /
    • 2000
  • Consider the problem of estimating regression function from a set of data which is contaminated by a long-tailed error distribution. The linear smoother is a kind of a local weighted average of response, so it is not robust against outliers. The kernel M-smoother and the lowess attain robustness against outliers by down-weighting outliers. However, the kernel M-smoother and the lowess requires the iteration for computing the robustness weights, and as Wang and Scott(1994) pointed out, the requirement of iteration is not a desirable property. In this article, we propose the robust nonparametic regression method which does not require the iteration. Robustness can be achieved not only by down-weighting outliers but also by transforming outliers. The rank transformation is a simple procedure where the data are replaced by their corresponding ranks. Iman and Conover(1979) showed the fact that the rank transformation is a robust and powerful procedure in the linear regression. In this paper, we show that we can also use the rank transformation to nonparametric regression to achieve the robustness.

  • PDF

Development of a Kinematic Wave Model to Route Overland Flow in Vegetated Area (II) -Runoff Plot Experiments and Model Application- (초지의 지표면 흐름을 추적하기 위한 Kinematic Wave Model의 개발(II) - 포장실험과 모형의 응용 -)

  • ;W.L.Magette
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.35 no.3
    • /
    • pp.74-80
    • /
    • 1993
  • Runoff simulation tests to investigate the flow mechanics of nonsuomerged overland flow in a natural grass intervening land system were condueted and a modified kinematic wave overland runoff model developed by Choi et al. (1993) was verified. Nonhomogeneity and heterogeneity of the soil, slope, local topography, infiltration, grass density, and the density and activity of the soil microhes and wild animals were the major factors affecting the flow. Streamlines were disturbed by grass stems and small concentrated flows due to the disturbed streamlines and local topography were observed a lot. Relatively larger concentrated flows were observed where bundles of grass were dominant than where individual grasses were growing. Predicted hydrographs were agreed verv well with measured hydrographs. Since the modified model considers grass density in computing flow depth and hydraulic radius, it can be better than existing kinematic wave model if it were used to route nonpoint source pollutant attenuation processes in many grass intervening land systems.

  • PDF

Hybrid Search for Vehicle Routing Problem With Time Windows (시간제약이 있는 차량경로문제에 대한 Hybrid 탐색)

  • Lee, Hwa-Ki;Lee, Hong-Hee;Lee, Sung-Woo;Lee, Seung-Woo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.29 no.3
    • /
    • pp.62-69
    • /
    • 2006
  • Vehicle routing problem with time windows is determined each vehicle route in order to minimize the transportation costs. All delivery points in geography have various time restriction in camparision with the basic vehicle routing problem. Vechicle routing problem with time windows is known to be NP-hard, and it needs a lot of computing time to get the optimal solution, so that heuristics are more frequently developed than optimal algorithms. This study aims to develop a heuristic method which combines guided local search with a tabu search in order to minimize the transportation costs for the vehicle routing assignment and uses ILOG programming library to solve. The computational tests were performed using the benchmark problems.

Exact Histogram Specification Considering the Just Noticeable Difference

  • Jung, Seung-Won
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.3 no.2
    • /
    • pp.52-58
    • /
    • 2014
  • Exact histogram specification (EHS) transforms the histogram of an input image into the specified histogram. In the conventional EHS techniques, the pixels are first sorted according to their graylevels, and the pixels that have the same graylevel are further differentiated according to the local average of the pixel values and the edge strength. The strictly ordered pixels are then mapped to the desired histogram. However, since the conventional sorting method is inherently dependent on the initial graylevel-based sorting, the contrast enhancement capability of the conventional EHS algorithms is restricted. We propose a modified EHS algorithm considering the just noticeable difference. In the proposed algorithm, the edge pixels are pre-processed such that the output edge pixels obtained by the modified EHS can result in the local contrast enhancement. Moreover, we introduce a new sorting method for the pixels that have the same graylevel. Experimental results show that the proposed algorithm provides better image enhancement performance compared to the conventional EHS algorithms.

A Comparative Study of Local Features in Face-based Video Retrieval

  • Zhou, Juan;Huang, Lan
    • Journal of Computing Science and Engineering
    • /
    • v.11 no.1
    • /
    • pp.24-31
    • /
    • 2017
  • Face-based video retrieval has become an active and important branch of intelligent video analysis. Face profiling and matching is a fundamental step and is crucial to the effectiveness of video retrieval. Although many algorithms have been developed for processing static face images, their effectiveness in face-based video retrieval is still unknown, simply because videos have different resolutions, faces vary in scale, and different lighting conditions and angles are used. In this paper, we combined content-based and semantic-based image analysis techniques, and systematically evaluated four mainstream local features to represent face images in the video retrieval task: Harris operators, SIFT and SURF descriptors, and eigenfaces. Results of ten independent runs of 10-fold cross-validation on datasets consisting of TED (Technology Entertainment Design) talk videos showed the effectiveness of our approach, where the SIFT descriptors achieved an average F-score of 0.725 in video retrieval and thus were the most effective, while the SURF descriptors were computed in 0.3 seconds per image on average and were the most efficient in most cases.

Hierarchical Mesh Segmentation Based on Global Sharp Vertices

  • Yoo, Kwan-Hee;Park, Chan;Park, Young-Jin;Ha, Jong-Sung
    • International Journal of Contents
    • /
    • v.5 no.4
    • /
    • pp.55-61
    • /
    • 2009
  • In this paper, we propose a hierarchical method for segmenting a given 3D mesh, which hierarchically clusters sharp vertices of the mesh using the metric of geodesic distance among them. Sharp vertices are extracted from the mesh by analyzing convexity that reflects global geometry. As well as speeding up the computing time, the sharp vertices of this kind avoid the problem of local optima that may occur when feature points are extracted by analyzing the convexity that reflects local geometry. For obtaining more effective results, the sharp vertices are categorized according to the priority from the viewpoint of cognitive science, and the reasonable number of clusters is automatically determined by analyzing the geometric features of the mesh.

An efficent method of binocular data reconstruction

  • Rao, YunBo;Ding, Xianshu;Fan, Bojiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.9
    • /
    • pp.3721-3737
    • /
    • 2015
  • 3D reconstruction based on binocular data is significant to machine vision. In our method, we propose a new and high efficiency 3D reconstruction approach by using a consumer camera aiming to: 1) address the configuration problem of dual camera in the binocular reconstruction system; 2) address stereo matching can hardly be done well problem in both time computing and precision. The kernel feature is firstly proposed in calibration stage to rectify the epipolar. Then, we segment the objects in the camera into background and foreground, for which system obtains the disparity by different method: local window matching and kernel feature-based matching. Extensive experiments demonstrate our proposed algorithm represents accurate 3D model.

Joint Access Point Selection and Local Discriminant Embedding for Energy Efficient and Accurate Wi-Fi Positioning

  • Deng, Zhi-An;Xu, Yu-Bin;Ma, Lin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.3
    • /
    • pp.794-814
    • /
    • 2012
  • We propose a novel method for improving Wi-Fi positioning accuracy while reducing the energy consumption of mobile devices. Our method presents three contributions. First, we jointly and intelligently select the optimal subset of access points for positioning via maximum mutual information criterion. Second, we further propose local discriminant embedding algorithm for nonlinear discriminative feature extraction, a process that cannot be effectively handled by existing linear techniques. Third, to reduce complexity and make input signal space more compact, we incorporate clustering analysis to localize the positioning model. Experiments in realistic environments demonstrate that the proposed method can lower energy consumption while achieving higher accuracy compared with previous methods. The improvement can be attributed to the capability of our method to extract the most discriminative features for positioning as well as require smaller computation cost and shorter sensing time.