• Title/Summary/Keyword: Loading type

Search Result 1,915, Processing Time 0.031 seconds

An experimental comparison study on performance evaluation for hydraulic pin-on-disk type tribotester (유압식 마찰시험기의 성능 평가에 관한 실험적 비교 연구)

  • 서만식;이상욱;구영필;조용주
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.285-291
    • /
    • 1998
  • A hydraulic pin-on-disk type tribotester was developed and it's performance was investigated experimentally. The estimate of the performance was accomplished by comparing those of the pneumatic and the dead-weight loading method. The reliability to the performance was conformed. By hydraulic loading method more accra'ate friction coefficient could be got.

  • PDF

Parametric study for influential factors on unbonded tendon stress increase (비부착 긴장재의 응력 변화에 영향을 미치는 변수에 관한 고찰)

  • 이선화;문정호;임재형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.651-656
    • /
    • 2000
  • The strain compatibility analysis shows that the influential parameters of loading type, reinforcing ratio, and span-depth ratio affect on the tendon stress in unbonded prestresses concrete member significantly. However, existing test results did not comply exactly with the analytical results. In consequence, the present study was planned to examine the parameters in order to complete Moon/Lim's design equation. The test variables with 12 specimens were loading type, reinforcing ratio, and span-depth ratio. As results, the effect of influential parameters were examined throughly and Moon/Lim's design equation was proven to be accurate.

  • PDF

Structural Analysis of Boarding Bridge (탑승교의 구조해석)

  • U, Chang-Su;Kim, Jeong-U
    • 연구논문집
    • /
    • s.25
    • /
    • pp.207-213
    • /
    • 1995
  • Board bridges are one of the most important structural components of the airport ground equipment. Passenger boarding bridges will be installed to provide enclosed passengers for persons moving between aircraft loading doors and second story terminal gates. In order to the understand of boarding bridge, type and structural components are investigated and analyzed by using the commercial finite element code for model of various loading conditions. As results, the deformed shape and stress distribution of WS-750T and Jetway system type are obtained. It is expected to establish basic technology to design and change the shape of boarding bridge to improve the function.

  • PDF

STRESS ANALYSIS OF SUPPORTING TISSUES AND IMPLANTS ACCORDING TO IMPLANT FIXTURE SHAPES AND IMPLANT-ABUTMENT CONNECTIONS (임플랜트 고정체의 형태와 연결방식에 따른 임플랜트 및 지지조직의 응력분포)

  • Han Sang-Un;Park Ha-Ok;Yang Hong-So
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.42 no.2
    • /
    • pp.226-237
    • /
    • 2004
  • Purpose: Four finite element models were constructed in the mandible having a single implant fixture connected to the first premolar-shaped superstructure, in order to evaluate how the shape of the fixture and the implant-abutment connection would influence the stress level of the supporting tissues fixtures, and prosthethic components. Material and methods : The superstructures were constructed using UCLA type abutment, ADA type III gold alloy was used to fabricate a crown and then connected to the fixture with an abutment screw. The models BRA, END , FRI, ITI were constructed from the mandible implanted with Branemark, Endopore, Frialit-2, I.T.I. systems respectively. In each model, 150 N of vertical load was placed on the central pit of an occlusal plane and 150 N of $40^{\circ}$ oblique load was placed on the buccal cusp. The displacement and stress distribution in the supporting tissues and the other components were analysed using a 2-dimensional finite element analysis . The maximum stress in each reference area was compared. Results : 1. Under $40^{\circ}$ oblique loading, the maximum stress was larger in the implant, superstructure and supporting tissue, compared to the stress pattern under vertical loading. 2. In the implant, prosthesis and supporting tissue, the maximum stress was smaller with the internal connection type (FRI) and the morse taper type (ITI) when compared to that of the external connection type (BRA & END). 3. In the superstructure and implant/abutment interface, the maximum stress was smaller with the internal connection type (FRI) and the morse taper type (ITI) when compared to that of the external connection type (BRA & END). 4. In the implant fixture, the maximum stress was smaller with the internal connection type (FRI) and the morse taper type (ITI) when compared to that of the external connection type (BRA & END). 5 The stress was more evenly distributed in the bone/implant interface through the FRI of trapezoidal step design. Especially Under $40^{\circ}$ oblique loading, The maximum stress was smallest in the bone/implant interface. 6. In the implant and superstructure and supporting tissue, the maximum stress occured at the crown loading point through the ITI. Conclusion: The stress distribution of the supporting tissue was affected by shape of a fixture and implant-abutment connection. The magnitude of maximum stress was reduced with the internal connection type (FRI) and the morse taper type (ITI) in the implant, prosthesis and supporting tissue. Trapezoidal step design of FRI showed evenly distributed the stress at the bone/implant interface.

Evaluating Two Types of Rectangular Secondary Clarifier Performance at Biological Nutrient Removal Facilities (생물학적 고도처리공법에 적용된 두 형태의 장방형 이차침전지 성능 파악)

  • Lee, Byonghi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.5
    • /
    • pp.561-570
    • /
    • 2013
  • There are two types of rectangular secondary clarifier at biological nutrient removal (BNR) facility to settle MLSS; conventional activated sludge secondary clarifier and Gould Type I clarifier. In this study, the performances of two types at respective biological nutrient removal facility are compared using weekly operational data. Surface Overflow Rate (SOR), Surface Loading Rate (SLR), Sludge Volume Index (SVI), secondary effluent SS concentration are studied. It has found that Gould Type I has 3.5 times less average secondary effluent SS concentration that is 2.4 mg/L than that of conventional activated sludge secondary clarifier. Both SOR and SLR have shown little effect on secondary effluent SS concentrations at Gould Type I clarifier in contrary that SOR affects the secondary effluent SS concentrations at conventional activated sludge rectangular secondary clarifier. From this study, it is recommended that Gould Type I must be considered for secondary clarifier when BNR plant is designed.

Study of Earthquake Resilient RC Shear Wall Structures

  • Jiang, Huanjun;Li, Shurong
    • International Journal of High-Rise Buildings
    • /
    • v.10 no.3
    • /
    • pp.211-218
    • /
    • 2021
  • A new type of earthquake resilient reinforced concrete (RC) shear wall structure, installed with replaceable coupling beams and replaceable corner components at the bottom of wall piers, is proposed in this study. At first, the mechanical behavior of replaceable components, such as combined dampers and replaceable corner component, is studied by cyclic loading tests on them. Then, cycling loading tests are conducted on one conventional coupled shear wall and one new type of coupled shear wall with replaceable components. The test results indicate that the damage of the new type of coupled shear wall concentrates on replaceable components and the left parts are well protected. Finally, a case study is introduced. The responses of one conventional frame-tube structure and one new type of structure installed with replaceable components under the wind and the earthquake are compared, which verify that the performance of new type of structure is much better than the conventional structure.

Numerical investigation of RC structural walls subjected to cyclic loading

  • Cotsovos, D.M.;Pavlovic, M.N.
    • Computers and Concrete
    • /
    • v.2 no.3
    • /
    • pp.215-238
    • /
    • 2005
  • This work is based on a nonlinear finite-element model with proven capacity for yielding realistic predictions of the response of reinforced-concrete structures under static monotonically-increasing loading. In it, the material description relies essentially on the two key properties of triaxiality and brittleness and, thus, is simpler than those of most other material models in use. In this article, the finite-element program is successfully used in investigating the behaviour of a series of RC walls under static cyclic loading. This type of loading offers a more strenuous test of the validity of the proposed program since cracks continuously form and close during each load cycle. Such a test is considered to be essential before attempting to use the program for the analysis of concrete structures under seismic excitation in order to ensure that the solution procedure adopted is numerically stable and can accurately predict the behaviour of RC structures under such earthquake-loading conditions. This is achieved through a comparative study between the numerical predictions obtained presently from the program and available experimental data.

Enhancement of Buckling Characteristics for Composite Square Tube by Load Type Analysis (하중유형 분석을 통한 좌굴에 강한 복합재료 사각관 설계에 관한 연구)

  • Seokwoo Ham;Seungmin Ji;Seong S. Cheon
    • Composites Research
    • /
    • v.36 no.1
    • /
    • pp.53-58
    • /
    • 2023
  • The PIC design method is assigning different stacking sequences for each shell element through the preliminary FE analysis. In previous study, machine learning was applied to the PIC design method in order to assign the region efficiently, and the training data is labeled by dividing each region into tension, compression, and shear through the preliminary FE analysis results value. However, since buckling is not considered, when buckling occurs, it can't be divided into appropriate loading type. In the present study, it was proposed PIC-NTL (PIC design using novel technique for analyzing load type) which is method for applying a novel technique for analyzing load type considering buckling to the conventional PIC design. The stress triaxiality for each ply were analyzed for buckling analysis, and the representative loading type was designated through the determined loading type within decision area divided into two regions of the same size in the thickness direction of the elements. The input value of the training data and label consisted in coordination of element and representative loading type of each decision area, respectively. A machine learning model was trained through the training data, and the hyperparameters that affect the performance of the machine learning model were tuned to optimal values through Bayesian algorithm. Among the tuned machine learning models, the SVM model showed the highest performance. Most effective stacking sequence were mapped into PIC tube based on trained SVM model. FE analysis results show the design method proposed in this study has superior external loading resistance and energy absorption compared to previous study.

Ductile Fracture Behaviour of SPS Specimen Under Pure Mode II Loading (순수 모드 II하중 하에서의 SPS 시험편의 연성파괴 특성에 관한 연구)

  • O, Dong-Jun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.2
    • /
    • pp.289-295
    • /
    • 2001
  • The aim of this study is to investigate the ductile fracture behaviour under pure Mode II loading using A533B pressure vessel steel. Single punch shear(SPS) test was performed to obtain the J-R curve under pure Mode II loading which was compared with that of the Model I loading. Simulation using Rousellier Ductile Damage Theory(RDDT) was carried out with 4-node quadrilateral element(L(sub)c=0.25mm). For the crack advance, the failed element removal technique was adopted with a $\beta$ criterion. Through the $\beta$ value tuning-up procedures, $\beta$(sub)crit(sup)II was determined as 1.5 in contrast with $\beta$(sub)crit(sup)I=5.5. In conclusion, it was found that the J-R curve under Mode II loading was located at lower part than that under Mode I loading obtained from the previous study and that the $\beta$ values strongly depended on the loading type. In addition, the predicted result using RDDT showed a good agreement with the SPS experimental one under pure Mode II loading.

Formulating the Local Displacement and Local Moments of a Plate Stiffened with Open Ribs According to the Loading Sizes (재하 크기에 따른 개단면 리브 보강판의 국부 처짐과 국부 모멘트의 정형화)

  • Chu, Seok Beom
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.3
    • /
    • pp.267-278
    • /
    • 2013
  • In this study, stiffened plates with open ribs are analyzed to estimate and formulate the local displacement and local moments according to square loading sizes. For the local behaviors of plates stiffened with rectangular and reverse T ribs, the ratio functions according to the dimensions of stiffened plates are obtained at each square loading size. Analytical results show that values of the basic stiffened plates are different but the ratio functions of each square loading size are similar and the difference of the ratio functions between rectangular ribs and reverse T ribs are small, so the ratio functions can be unified by integrating the loading sizes regardless of the rib type. The application of the unioned ratio functions to L type ribs and rectangular loading shows good accuracies. Therefore, the local behaviors of plates stiffened with open ribs can easily be obtained by using the unioned ratio functions proposed in this study.