• 제목/요약/키워드: Loading solution

검색결과 873건 처리시간 0.026초

3차원 적재문제의 최적 해법 (An Algorithm on Three-Dimensional Loading Problem)

  • 김상열;박순달
    • 한국경영과학회지
    • /
    • 제23권2호
    • /
    • pp.1-13
    • /
    • 1998
  • The purpose of this paper is to formulate the three-dimensional loading problem and to develop an exact algorithm. The three-dimensional loading problem is not only to load as many boxes as possible, but also to ensure load stability. In this Paper, we propose formulation by zero-one integer programming. Further we propose as an algorithm the branch-and-bound enforced by efficient bounding criteria. As an upper bound, we use the solution of the Lagrangean relaxation problem which relaxes constraints of zero-one IP, and as a lower bound, we use a heuristic solution induced by the solution of the Lagrangean relaxation problem. Last, we show computational experiments on convergency of upper and lower bounds.

  • PDF

바지선 적재 문제의 최대이득 물품 우선 적재 알고리즘 (Maximum Profit Priority Goods First Loading Algorithm for Barge Loading Problem)

  • 이상운
    • 한국컴퓨터정보학회논문지
    • /
    • 제19권10호
    • /
    • pp.169-173
    • /
    • 2014
  • 최적 해를 다항시간으로 얻을 수 있는 알고리즘이 알려져 있지 않은 NP-완전인 상자포장 문제의 일종인 바지선 적재 문제에 대해, Gu$\acute{e}$ret et al.은 $O(m^4)$ 수행 복잡도의 선형계획법으로 해를 얻고자 하였다. 반면에, 본 논문에서는 이득 우선순위로 적재하는 규칙인 O(m log m) 복잡도의 알고리즘을 제안하였다. 제안된 방법은 첫 번째로 이득 우선순위를 결정하였다. 다음으로, 이득 우선순위 물품들을 바지선에 적재하는 방법으로 초기 적재 결과를 얻었다. 마지막으로, 바지선 적재 용량을 미달하는 경우, 이전에 적재된 물품과 미선적된 물품을 상호 교환하여 바지선 적재용량을 충족시켰다. 실험 결과, 제안된 알고리즘은 NP-완전 문제인 바지선 적재 문제에 대해 선형계획법의 $O(m^4)$를 O(m log m)으로 단축시켰다.

발포용 PU/MWNT 복합필름의 제조와 특성분석 (Manufacturing and Characteristics Analysis of PU/MWNT Composite Film for Forming)

  • 박준형;김정현;김승진
    • 한국염색가공학회지
    • /
    • 제22권4호
    • /
    • pp.362-372
    • /
    • 2010
  • This paper surveys the physical properties of the multiwall carbon nanotube (MWNT) and polyurethane composite film for improvement of mechanical properties and electrical characteristics. The modification of MWNT was carried out by acid treatment with nitric and sulphuric acid mixed solution, and then followed by thermal treatment for enhancing MWNT dispersion with polyurethane. This modified MWNT was mixed with polyurethane by changing the loading content of MWNT and dispersion time under the dimethylformamide solution in the ultrasonic wave apparatus. Various physical characteristics of the modified PU/MWNT films were measured and analyzed in terms of the loading content and dispersion time. The maximum absorbance of the PU/MWNT films were observed with the 2wt% loading at dispersion times of 2 and 24 hour, respectively. The minimum electrical volume resistivity of PU/MWNT film was shown at the loading content of 0.5wt% or more irrespective of dispersion treating time. However the optimum condition was assumed to 2wt% loading at dispersion time of 2 hours by assessing the surface profile of the film using video microscope. The breaking stress and strain of the PU/MWNT film decreased with increasing loading content, but no change of physical properties was shown with increasing in dispersion time.

조선기자재 산업에서의 방문 순서를 고려한 차량 적재 모형 (Vehicle Loading Model Considering Routing Sequence in Shipbuilding Material)

  • 이종호;신재영
    • 한국항해항만학회지
    • /
    • 제31권8호
    • /
    • pp.711-716
    • /
    • 2007
  • 컨테이너에 화물을 적재함에 있어서 고려해야할 점으로 컨테이너의 적재율을 들 수 있다. 단순히 제한된 공간에 보다 많은 양의 화물을 적재하여 비용을 낮추고자 하는 노력은 꾸준히 계속되어 왔다. 하지만 방문순서를 고려해야만 하는 화물의 경우는 다르다. 조선기자재와 같은 대형 화물들의 경우 방문순서를 고려하지 않았을 경우 하역작업에서 화물 재 조작 또는 하역 작업이 불가능한 상황이 발생할 수 있기 때문이다. 본 연구에서는 화물 적재 시 방문 순서를 고려하는 문제를 해결하고자 하며, 이에 방문 순서와 적재율을 동시에 고려한 컨테이너 혼재모형과 그 해법을 제시하고자 한다.

Analytical solutions for skewed thick plates subjected to transverse loading

  • Chun, Pang-Jo;Fu, Gongkang;Lim, Yun Mook
    • Structural Engineering and Mechanics
    • /
    • 제38권5호
    • /
    • pp.549-571
    • /
    • 2011
  • This paper presents analytical solutions for skewed thick plates under transverse loading that have previously been unreported in the literature. The thick plate solution is obtained in a framework of an oblique coordinate system. The governing equation is first derived in the oblique coordinate system, and the solution is obtained using deflection and rotation as partial derivatives of a potential function developed in this research. The solution technique is applied to three illustrative application examples, and the results are compared with numerical solutions in the literature and those derived from the commercial finite element analysis package ANSYS 11. These results are in excellent agreement. The present solution may also be used to model skewed structures such as skewed bridges, to facilitate efficient routine design or evaluation analyses, and to form special elements for finite element analysis. At the same time, the analytical solution developed in this research could be used to develop methods to address post-buckling and dynamic problems.

A Modified Two-Parameter Solution for Crack-Tip Field in Bending Dominated Specimens

  • Jang Seok-Ki;Zhu Xian Kui
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제30권4호
    • /
    • pp.494-504
    • /
    • 2006
  • It is well known that the two-parameter $J-A_2$ solution can well characterize the crack-tip fields and quantify the crack-tip constraint for different flawed geometries in variety of loading conditions. However, this solution fails to do so for bending dominated specimens or geometries at large deformation because of the influence of significant global bending stress on the crack-tip field. To solve this issue, a modified $J-A_2$ solution is developed in this paper by introducing an additional term to address the global bending influence. Using the $J_2$ flow theory of plasticity and within the small-strain framework detailed finite element analyses are carried out for the single edge notched bend (SENB) specimen with a deep crack in A533B steel at different deformation levels ranging from small-scale Yielding to large-scale Yielding conditions. The numerical results of the crack-tip stress field are then compared with those determined from the $J-A_2$ solution and from the modified $J-A_2$ solution at the same level of applied loading Results indicate that the modified $J-A_2$ solution largely improves the $J-A_2$ solution, and match very well with the numerical results in the region of interest at all deformation levels. Therefore, the proposed solution can effectively describe the crack-tip field and the constraint for bending dominated specimens or geometries.

펄프 섬유의 세포벽 미세공극 충전 (Cell Wall Micropore Loading of Pulp Fibers)

  • 이종만;조병묵
    • Journal of the Korean Wood Science and Technology
    • /
    • 제20권4호
    • /
    • pp.57-64
    • /
    • 1992
  • The unique cell wall micropores of pulp fiber can be utilized as loading site in variety of important practical application which could be the basis of new papermaking technologies. One of these includes the manufature of paper containing higher levels of in situ filler precipitated. Hardwood pulp fiber were first impregnated with the solution of sodium carbonate($Na_2CO_3$). The micropores in cell wall of pulp fibers were filled with the liquid salt solution. The second calcium nitrate($Ca(NO_3)_2$) solution formed an insoluble calcium carbonate($CaCO_3$) precipitate within the cell wall micropores by interacting with the first sodium carbonate solution. The effects of chemical concentration and dryness of pulp fibers on the retention of cell wall micropore loaded filler were investigated. The paper properties of cell wall micropore loaded pulp fibers were compared with those of conventionally loaded and lumen loaded pulp fibers. Also the presense of the fillers within the cell wall micropore was observed by SEM. Increasing the chemical concentration to generate the calcium carbonate increased the retention of filler in cell wall micropore loaded pulp fibers. The particle size distribution of precipitated calcium carbonate ranged from $0.1{\mu}m$ to $80{\mu}m$. But, the average particle size of cell wall micropore loaded calcium carbonate was $4{\mu}m$. The paper made from never dried pulp fibers, the cell wall micropores which were filled with calcium carbonate, had better mechanical and optical properties than those of conventionally loaded or lumen loaded pulp fibers.

  • PDF

Plane strain consolidation of a compressible clay stratum by surface loads

  • Rani, Sunita;Puri, Manoj;Singh, Sarva Jit
    • Geomechanics and Engineering
    • /
    • 제7권4호
    • /
    • pp.355-374
    • /
    • 2014
  • An analytical solution of the fully coupled system of equations governing the plane strain deformation of a poroelastic medium with anisotropic permeability and compressible fluid and solid constituents is obtained. This solution is used to study the consolidation of a poroelastic clay layer with free permeable surface resting on a rough-rigid permeable or impermeable base. The stresses and the pore pressure are taken as the basic state variables. Displacements are obtained by integrating the coupled constitutive relations. The case of normal surface loading is discussed in detail. The solution is obtained in the Laplace-Fourier domain. Two integrations are required to obtain the solution in the space-time domain which are evaluated numerically for normal strip loading. Consolidation of the clay layer and diffusion of pore pressure is studied for both the bases. It is found that the time settlement is accelerated by the permeability of the base. Initially, the pore pressure is not affected by the permeability of the base, but has a significant effect, as we move towards the bottom of the layer. Also, anisotropy in permeability and compressibilities of constituents of the poroelastic medium have a significant effect on the consolidation of the clay layer.

간격 및 접촉에 의한 충격하중을 고려한 고속 회전 디스크의 유한요소 해석 (Finite Element Analysis of High-speed Rotating Disks Considering Impulsive Loading by the Clearance and Contact)

  • 이기수;김영술;소재욱
    • 한국소음진동공학회논문집
    • /
    • 제24권1호
    • /
    • pp.45-53
    • /
    • 2014
  • For the time integration solution of the impulsive dynamic contact problem of high-speed rotating disks formulated by the finite element technique, the velocity and acceleration contact constraints as well as the displacement contact constraint are imposed for the numerical stability without spurious oscillations. The solution of the present technique is checked by the numerical simulation using the concentric high-speed rotating disks with the clearance and impulsive loading. It is shown that the almost steady state solution agrees with the corresponding analytical solution of the elasticity and that the differentiated constraints are crucial for the numerical stability of such high-speed contact problems of the disks under impulsive loading.

퍼지 환경하에 FMS의 다목적 작업할당 모델 (A Multi-Objective Loading Model in a Flexible Manufacturing System Under Fuzzy Environment)

  • 남궁석;이상용
    • 산업경영시스템학회지
    • /
    • 제18권33호
    • /
    • pp.79-86
    • /
    • 1995
  • This paper intends to develope the multi-objective loading model in a flexible manufacturing system (FMS) to support decision maker under fuzzy environment. To obtain the optimal solution, this paper uses interactive fuzzy multi-objective linear programing(IFMOLP) and describes the process of optimal solution. As a case study, numerical examples are demonstrated to show the effectiveness of the proposed model.

  • PDF