• Title/Summary/Keyword: Loading and Unloading

Search Result 628, Processing Time 0.024 seconds

A Study on Modeling of FMS using Closed Queueing Network (폐쇄형 대기행렬 네트워크에 의한 FMS 모델링)

  • Jeong, Seok-Chan;Cho, Kyu-Kab
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.21 no.2
    • /
    • pp.153-165
    • /
    • 1995
  • Many closed queueing network models have been used as an effective tool to make a preliminary design of FMS. Although a loading/unloading function is an important factor to effect the utilization and throughput of FMS as well as a transfer function and a processing function, the Solberg's model did not clarify the loading/unloading function. In this paper, we propose a closed queueing network model for analyzing a flexible manufacturing system that consists of a load/unload station, a material handling system and a group of workstations for processing jobs, and define the expected utilization and the expected throughput of the FMS. As applications of the proposed model, the cases of a material handling system consisting of a conveyor and the FMS including an inspection station are also formulated.

  • PDF

Calculation of residual stresses by thermal elasto-plastic analysis (열탄소성 해석에 의한 잔류응력의 계산)

  • 장창두;서승일
    • Journal of Welding and Joining
    • /
    • v.6 no.4
    • /
    • pp.35-43
    • /
    • 1988
  • Welding residual stresses were calculated by two dimensional thermal elasto-plastic analysis using element method. Complicated plastic behavior during heat transfer was simulated with time. Fist, temperature distributions. To consider time varying behavior of material properties and loading and unloading processes, iterative calculation based on initial stiffness method was carried out. The method proposed by Yamata was used in time increment control which determined the accuracy of claculation. comparison with other caculated and experimental results shows fairly good agreement.

  • PDF

Effects of Loading-Unloading Environments on the Efficiency of Freight Railroad Stations : An Empirical Investigation (적하작업환경이 철도화물취급역의 효율성에 미치는 영향)

  • Kim, Seong-Ho
    • Korean Management Science Review
    • /
    • v.27 no.2
    • /
    • pp.45-54
    • /
    • 2010
  • In this paper we analyze the effects of loading-unloading environments on the efficiency of freight railroad stations using a two-stage procedure for efficiency model estimation. And from the results we explore a way for efficiency improvement of freight railroad stations. Two-stage procedure is composed of data envelopment analysis and regression analysis. The results show that we could expect efficiency improvement through the government"s effort to make railway stations to be strategic position. Furthermore, they advocate policy-makers that efficiency can be improved by simplifying the kinds of freight items and increasing the scale.

Analysis of the Dynamic Characteristics of the In-Arm Type Hydropneumatic Suspension Unit (암 내장형 유기압 현수장치의 동특성 해석)

  • Lee, H.W.;Jo, J.R.;Lee, J.K.;Jang, M.S.;An, D.S.
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.519-524
    • /
    • 2003
  • In this paper we discuss the dynamic characteristics of the in-arm type hydropneumatic suspension unit(ISU). For this, two accurate models are introduced. The first one is the Benedict-Webb-Rubin equation which is adopted for the spring behavior of a real gas. This equation is applicable for the high pressure of the nitrogen gas which acts as a spring in ISU system. The second one describes the behavior of a damper, which is divided into four parts - jounce-loading, jounce-unloading, rebound-loading and rebound-unloading. This approach gives a good approximation of the real damper system. For the comparison purpose, the numerical results of the dynamic behavior of ISU system using a real gas and an ideal gas are given in the paper.

  • PDF

A Experimental Study on the Fire Resistant Performance of the High Strength Concrete with Loading and Unloading test (재하 및 비재하 내화 실험을 통한 고강도콘크리트의 내화성능에 관한 실험적 연구)

  • Kim, Woo-Jae;Kim, Hyun-Bae;Kim, Kyu-Yong;Kim, Young-Sun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.11a
    • /
    • pp.61-64
    • /
    • 2009
  • Recently, the higher buildings are, the stronger concrete are used. Ultra high strength concrete have the possibility of spalling when a fire breaks out. so the fire-resistance performance is necessary to use the ultra high strength concrete on the high-rise building. On this study, the heating test for the concrete with loading/unloading is performed for ultra high strength concrete using nylon fiber. The heating test followed by ISO-834 heating curve on the real-size specimen and the strength of concrete are 60, 80, 100, 200 MPa.

  • PDF

A Study on the development of intelligent coaxial grinding system (페룰 가공용 지능형 동축 연삭시스템 개발에 관한 연구)

  • Ah, K.J.;Lee, H.J.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1092-1098
    • /
    • 2004
  • Today the demand of the optical communication components has been increased. Zirconia Ferrule has become the one of the most important elements because it determines transmission efficiency and quality of information in the optical communication system. Grinding is the major process in the ferrule manufacturing process which require high processing precision. In this reseach, specially designed spindle, chucking system, loading & unloading system and cooling system, as a supporting experimental equipment for development of an Intelligent Coaxial Grinding System (ICGS) for Zirconia Ferrule processing, is developed. We are also analized the adaptability of ICGS in practical use, through the way of evaluation for the performance of the each systems above.

  • PDF

Development of a Rough Rice Handling Equipment for In-Bin Drying and Storage System (개량 곳간용 벼이송장치(移送裝置) 개발(開發))

  • Chang, D.I.
    • Journal of Biosystems Engineering
    • /
    • v.13 no.3
    • /
    • pp.44-51
    • /
    • 1988
  • The objective of this study is to develop a grain handling system for loading, unloading and transporting of rough rice stored at the in-bin drying and storage (IBDS) developed by the Korea Advanced Institute of Science and Technology(KAIST). A mechanized Fain handling system consisted of a portable auger and a gate was developed and tested. The test results can be summarized as the following: 1) The loading capacity of the handling system developed is $16.2m^3/h$ (8.3 ton/h) for the Indica type rice and $13.0m^3/h$(7.3 ton/h) for the Japonica type. It is greater than that of manual handling as much as 2.5 - 2.7 times. 2) The unloading capacity of the handling system developed is $16.0m^3/h$(8.2 ton/h) for the Indica type rice and $12.6m^3/h$(7.0 ton/h) for the Japonica type. It is greater than that of the manual as much as 4.7 - 5.5 times. 3) For 3-ton capacity of the storage, the loading and unloading can be performed for 20 and 30 minutes by one man operation of equipment. while 60 and 120 minute for the manual of 2 men, respectively. 4) The volumetric efficiency of the system developed is 0.42 - 0.54 and the power efficiency is 4.0 - 4.4. 5) The break-even quantity of the handling system developed is about 38.6 ton($68.7m^3$) of rough rice and the initial investment for the system would be returned within five years for the most owners of the KAIST IBDS system.

  • PDF

A Study for the Container Job-scheduleing using Advanced Clover Algorithm (개선된 클로버 알고리즘를 이용한 컨테이너 작업 스케쥴링에 관한 연구)

  • Kwon, Jang-Woo;Hong, Jun-Eui
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.10
    • /
    • pp.1999-2007
    • /
    • 2007
  • This article describes advanced clover algorithm for effective loading and unloading of containers using stackers position data in a yard. The job scheduling must rely on job assign of stackers and position data processing to dynamically allocate stackers, and maintain multiple job processing, all based on task requirements. A stacker tracking using GPS and GIS is an essential capability and is used as yard loading and unloading process improvement for yard management. After estimating position of stackers in a yard the raper describes advanced clover algorithm and other techniques for monitoring loading and unloading of individual containers as well as combinatorial stacker load balancing problems such as estimating load of each stackers. Results from simulations and experimental implementations have demonstrated that the suggested approaches are efficient in stacker management.

Theoretical explanation of rock splitting based on the micromechanical method

  • Huang, Houxu;Li, Jie;Hao, Yiqing;Dong, Xin
    • Geomechanics and Engineering
    • /
    • v.14 no.3
    • /
    • pp.225-231
    • /
    • 2018
  • In this paper, in order to explain the splitting of cylindrical rock specimen under uniaxial loading, cracks in cylindrical rock specimen are divided into two kinds, the longitudinal crack and the slanting crack. Mechanical behavior of the rock is described by elastic-brittle-plastic model and splitting is assumed to suddenly occur when the uniaxial compressive strength is reached. Expression of the stresses induced by the longitudinal crack in direction perpendicular to the major axis of the crack is deduced by using the Maxwell model. Results show that the induced stress is tensile and can be greater than the tensile strength even before the uniaxial compressive strength is reached. By using the Inglis's formula and simplifying the cracks as slender ellipse, the above conclusions that drawn by using the Maxwell model are confirmed. Compared to shearing fracture, energy consumption of splitting seems to be less, and splitting is most likely to occur when the uniaxial loading is great and quick. Besides, explaining the rock core disking occurred under the fast axial unloading by using the Maxwell model may be helpful for understanding that rock core disking is fundamentally a tensile failure phenomenon.

Analysis of hysteresis rule of energy-saving block and invisible multi-ribbed frame composite wall

  • Lin, Qiang;Li, Sheng-cai;Zhu, Yongfu
    • Structural Engineering and Mechanics
    • /
    • v.77 no.2
    • /
    • pp.261-272
    • /
    • 2021
  • The energy-saving block and invisible multi-ribbed frame composite wall (EBIMFCW) is a new type of load-bearing wall. The study of this paper focus on it is hysteresis rule under horizontal cyclic loading. Firstly, based on the experimental data of the twelve specimens under horizontal cyclic loading, the influence of two important parameters of axial compression ratio and shear-span ratio on the restoring force model was analyzed. Secondly, a tetra-linear restoring force model considering four feature points and the degradation law of unloading stiffness was established by combining theoretical analysis and regression analysis of experimental data, and the theoretical formula of the peak load of the EBIMFCW was derived. Finally, the hysteretic path of the restoring force model was determined by analyzing the hysteresis characteristics of the typical hysteresis loop. The results show that the curves calculated by the tetra-linear restoring force model in this paper agree well with the experimental curves, especially the calculated values of the peak load of the wall are very close to the experimental values, which can provide a reference for the elastic-plastic analysis of the EBIMFCW.