• Title/Summary/Keyword: Loading System

Search Result 3,327, Processing Time 0.033 seconds

Robust $\mu$-Controller design for Control Loading System of Flight Simulator (항공기 시뮬레이터 조종력 제어시스템의 견실 $\mu$-제어기 설계)

  • 방경호
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.405-408
    • /
    • 1998
  • Generally, the principle function of simulator control loading system is to provide the pilot or student with the "feel" of the actual aircraft flight control systems during flight, taxing, and in malfunction. Flight control "feel" is the resistance felt by the pilot when moving a control stick or pedal, coupled with the amount of control surface deflection, and hence aircraft response, resulting from the input. Therefore, the control loading servo must be capable of performing to some general list of requirements derived from real aircraft control forces. In this paper, we deal with a $\mu-controller$ design for a control loading system of the flight simulator. For this, we derive a frequency response of the hydraulic system from the identification data and then design a controller using a $\mu-synthesis$ method. Under the same condition of simulation, $\mu-controller$ provides the superior performance than PID controller.than PID controller.

  • PDF

Development of Automation System for Press Line (대형 프레스용 자동화 시스템 개발)

  • 김순철;권용수;한상동;노태정;안병규
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.806-809
    • /
    • 1996
  • The present development relates to an apparatus for loading or unloading a workpiece, and more particularly, to an apparatus for loading or unloading a workpiece from a press die or supplier An apparatus for loading or unloading a workpiece has been installed in a press in order to load or unload a workpiece from a press die. There has been known such a loading or unloading apparatus as the apparatus can feed a workpiece in not only the horizontal direction but also in the vortical direction. Press working system in automotive factories are now switching over to a transfer press work ing system. The current problem to be sieved immediately is to automate the existing manual press lines for the manpower saving and speedy production. “Automation system for press line”has just been developed to meet the above trend. The loader and unloader are development under the design concept for high performance, easy control and operational safety to meet the more extensive.

  • PDF

New Fluid Flow System for Simulation of Mechanical Loading to Bone Cells During Human Gait Cycle

  • Ahn, Jae-Mok
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.3
    • /
    • pp.377-386
    • /
    • 2007
  • Mechanical loading to bone cells using simple sine wave or constant wave fluid flow has been widely used for in vitro experiments. Human gait is characterized by a complex loading to bones of lower extremities which results from a series of events consisting of heel strike, foot flat and push-off during the stance phase of the gait cycle. Telemetric force analyses have shown that human femora are subject to multiphasic loading. Therefore, it would be ideal if the physiologic loading conditions during human walking can be used for in vitro mechanotransduction studies. Here, for a mechanotransduction study, we develop it fluid flow system (FFS) in order to simulate human physiologic mechanicalloading on bone cells. The development methods of the FFS including the COR (Center for Orthopedic Research), monitor program are presented. The FFS could generate various multiphasic loading conditions of human gaits with output flow. Wall shear distribution was very uniform, with 81 % of the effective loading area of the culture on a glass slide. Our results demonstrated that the FFS, provide a new translational approach for unveiling molecular mechanotransduction pathways in bone cells.

Fracture Strength Measurement of Single Crystal Silicon Chips as a Function of Loading Rate during 3-Point Bending Test (3점 굴곡 실험에서 하중 속도 변화에 따른 단결정 실리콘 칩의 파괴강도 측정)

  • Lee, Dong-Ki;Lee, Seong-Min
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.2
    • /
    • pp.146-151
    • /
    • 2012
  • The present article shows how the fracture strength of single crystal silicon chips, which are generally used as semiconductor devices, is influenced by loading rate variation during a 3-point bending test. It was found that the fracture strength of the silicon chips slightly increases up to 4% with increasing loading rate for loading rates lower than 20 mm/min. Meanwhile, the fracture strength of the chips hardly increases with increase of loading rate to levels higher than 40 mm/min. However, there was an abrupt transition in the fracture strength within a loading rate range of 20 mm/min to 40 mm/min. This work explains through microscopic examination of the fracture surface of all test chips that such a big transition is related to the deflection of crack propagation direction from the (011) [${\bar{1}}00$] system to the (111) [${\bar{2}}11$] system in a particular loading rate (i.e. from 20 mm/min to 40 mm/min).

The Effect of Cure System for the Viscoelastic Properties of Vulcanized Rubber (가황시스템 변화가 가황고무의 점탄성적 특성에 미치는 효과)

  • Park, Nam-Cook;Lee, Seog
    • Elastomers and Composites
    • /
    • v.34 no.1
    • /
    • pp.11-19
    • /
    • 1999
  • Rebound, storage and loss modulus, and tan ${\delta}$ were investigated on cured rubbers with various ratios of sulfur to accelerator and the volume fraction of carbon black in the cured rubbers. The rebound was increased as the sulfur to accelerator ratio and the volume fraction of carbon black decreased. The storage modulus decreased as the loading of carbon black and the strain increased regardless of the cure systems. The network structure formed by filler-filler interaction was destroyed above 6% strain regardless of the loading of carbon black, because constant storage modulus was shown at the higher strain than 3% for $40{\sim}50phr$ loading of carbon black and at the higher strain than 6% for 60 phr and above loading of carbon black. Little effect on loss modulus was found at the low loading of carbon black, but the peak of loss modulus was shown at 1% strain as the loading of carbon black was increased. Tan ${\delta}$ increased as the loading of carbon black and the strain were increased regardless of the cure system, and maximum tan ${\delta}$ was shown at 2% strain regardless of the loading of carbon black.

  • PDF

Development of the Real-time Controller for Control Loading System in Aircraft Simulator (항공기 시뮬레이터용 조종 반력 시스템 실시간 제어기 개발)

  • Park, Joon-Ho;Kim, Tae-Kue;Park, Seung-Gyu;Yoon, Tae-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1846-1847
    • /
    • 2006
  • In this study, we developed the real-time controller for control loading system (CLS) of aircraft simulator. The CLS is given the forces as inputs: the exerted force by a pilot, which is determined according to the position of the control stick, and the calculated force by the host computer. And then CLS makes the pilot feel the back loading force by supplying the motor drive with the actuator signal. The developed real-time controller for CLS is organized into the five parts which are the position sensing part including a encoder, the A/D converter part for the analog load cell signal, the communication interface part to communicate with the host, the D/A converter for the actuator signal, and the CPU DSP2812 to carry out a control algorithm. We constructed the test control loading system and carried out the experiment with the developed real-time controller. The experimental results showed that the real-time controller generates the back loading forces similar to the desired back loading force graph.

  • PDF

The development of automatic optical aligner with using the image processing (Image Processing을 이용한 자동 광 정렬 장치 개발)

  • Um, Chul;Kim, Byung-Hee;Kim, Sung-Geun;Choi, Young-Seok
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.536-539
    • /
    • 2002
  • In this paper, we developed the automatic optical fiber aligner by image processing and automatic loading system. Optical fiber is indispensable for optical communication systems that transmit large volumes of data at high speed, but super-precision technology in sub-micron units is required for optical axis adjustment, we have developed 6-axis micro stage system for I/O optical fiber arrays, the initial automatic aligning system/software for a input optical array by the image processing technique, fast I/O-synchronous aligning strategy, the automatic loading/unloading system and the automatic UV bonding mechanism. In order to adjust the alignment it used on PC based motion controller, a $10\mu\textrm{mm}$ repeat-detailed drawing of automatic loading system is developed by a primary line up for high detailed drawing. Also, at this researches used the image processing system and algorithm instead of the existing a primary hand-line up. and fiber input array and waveguide chip formed in line by automatic. Therefore, the developed and manufactured optical aligning system in this research fulfills the great role of support industry for major electronics manufacturers, telecommunications companies, universities, government agencies and other research institutions.

  • PDF

A STUDY ON THE VARIOUS IMPLANT SYSTEMS USING THE FINITE ELEMENT STRESS ANALYSIS (수종의 임플랜트 시스템에 따른 유한요소법적 응력분석에 관한 연구)

  • Yu Seong-Hyun;Park Won-Hee;Park Ju-Jin;Lee Young-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.2
    • /
    • pp.207-216
    • /
    • 2006
  • Statement of Problem: To conduct a successful function of implant prosthesis in oral cavity for a long time, it is important that not only structure materials must have the biocompatibility, but also the prosthesis must be designed for the stress, which is occurred in occlusion, to scatter adequately within the limitation of alveolar bone around implant and bio-capacity of load support. Now implant which is used in clinical part has a very various shapes, recently the fixture that has tapered form of internal connection is often selected. However the stress analysis of fixtures still requires more studies. Purpose: The purpose of this study is to stress analysis of the implant prosthesis according to the different implant systems using finite element method. Material and methods: This study we make the finite element models that three type implant fixture ; $Br{\aa}nemark$, Camlog, Frialit-2 were placed in the area of mandibular first premolar and prosthesis fabricated, which we compared with stress distribution using the finite element analysis under two loading condition. Conclusion: The conclusions were as follows: 1. In all implant system, oblique loading of maximum Von mises stress of implant, alveolar bone and crown is higher than vertical loading of those. 2. Regardless of loading conditions and the type of system. cortical bone which contacts with implant fixture top area has high stress, and cancellous bone has a little stress. 3. Under the vertical loading, maximum Von mises stress of $Br{\aa}nemark$ system with external connection type and tapered form is lower than Camlog and Frialit-2 system with internal connection type and tapered form, but under oblique loading Camlog and Frialit-2 system is lower than $Br{\aa}nemark$ system.

Measurements of Mechanical Behavior of Rough Rice under Impact Loading (벼의 충격(衝擊) 특성(特性)에 관한 연구(硏究))

  • Cha, J.Y.;Koh, H.K.;Noh, S.H.;Kim, M.S.;Kim, Y.H.
    • Journal of Biosystems Engineering
    • /
    • v.14 no.3
    • /
    • pp.207-214
    • /
    • 1989
  • In this study, impact force and angular displacement of the pendulum were measured by the load cell and potentiometer. Mechanical behavior of rough rice under impact loading was able to analyze precisely and efficiently, because measured data were accumulated and handled by the automatic data acquisition system making use of microcomputer system. Impact force and angular displacement were measured with a resolutiln of 1/1500 seconds in time. Mechanical behavior such as force and energy at rupture point of Japonica type and Indica type rough rice were measured with this system. After impact loading, the damage of rough rice was examined with the microphotograph and an allowable impact force was measured. The results obtained in this study are summarized as follows. 1. Machanical behavior of rough rice under impact loading was analyzed precisely and efficiently because measured data were accumulated and handled by this data acquisition system. 2. Rupture force and rupture energy of rough rice were appeared to be the lowest value in the range of 16 to 18 % moisture content, and rupture force and rupture energy of Japonica type were higher than those of Indica type in each level of moisture content. 3. From the result of the damage examined after the impact loading, allowable impact force was the lowest in the range of 16 to 18 % moisture content, and the value of the allowable impact force of Japonica type was higher than that of Indica type in each level of moisture content.

  • PDF

Studies on the Crosslinking Density and Reinforcement of Rubber Compounds by Cure System (가황조건별 배합고무의 가교밀도와 고무보강성에 관한 연구)

  • Park, Nam-Cook;Lee, Seog
    • Elastomers and Composites
    • /
    • v.33 no.5
    • /
    • pp.315-323
    • /
    • 1998
  • The purpose of this study was to investigate the crosslinking density and reinforcement of rubber compounds with various carbon black loadings, cure systems and cure temperatures. Bound rubber content increased with volume fraction of carbon black in rubber compounds, but total crosslinking density decreased with increasing the bound rubber content. Rate constant of cure reaction was changed significantly by cure system and cure temperature, especially it showed strong dependence on the cure temperature. High activation energys of cure reaction were shown in the rubber compound with high loading of carbon black under EC system and in the rubber compound with low loading of carbon black under CC system. High total crosslinking density of vulcanized compounds appeared in the rubber compound with low loading of carbon black and CC system among cure systems. Typical change of total crosslinking density by EC system was not shown. The highest elastic constant by Mooney-Rivlin equation was shown in the rubber compound with low loading of carbon black and SEC system. Modulus increased as increasing the loading of carbon black in the rubber compounds and showed the order of SEC, CC, and EC system for cure system.

  • PDF