• Title/Summary/Keyword: Loading Rate Effect

Search Result 546, Processing Time 0.032 seconds

The Effect of Rainfall on the Water Quality of a Small Reservoir (Lake Wangkung, Korea)

  • Hwang, Gil-Son;Kim, Jae-Ok;Kim, Jai-Ku;Kim, Young-Chul;Kim, Bom-Chul
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.spc
    • /
    • pp.39-43
    • /
    • 2005
  • The dynamics of water quality with the storm events were analyzed in a small reservoir for irrigation, Lake Wangkung. Water quality of the inflowing stream fluctuated seasonally with the variation of flow rate. Thermal stratification was consistent from April to October below 2 m depths and anoxic layer was developed below 2 m depth in summer. The unique feature of temperature showed that thermal stratification was disrupted by a heavy rain event during monsoon, but hypolimnetic hypoxia were reestablished after a few days. Phosphorus and nitrogen increased immediately following storm events. The marked increase may be due to the input of P-rich storm runoff from the watershed. Internal phosphorus loading can be one of the explanations for TP increases in summer. When there was a storm, total populations of phytoplankton and zooplankton was reduced immediately following the storm, indicating possible flushing of algae and zooplankton. After a lag period of low-density the plankton population bloomed to a peak again within five days after the storm. Turbid water in lake became clear again which coincided with the time of the phytoplankton buildup. The results demonstrate that water quality is regulated greatly by rainfall intensity in Lake Wangkung.

The effect of position of propeller fan relative to duct inlet on flow characteristics (프로펠러 팬과 덕트와의 상대위치가 유동특성에 미치는 영향)

  • Sim, W.C.;Cho, K.R.;Joo, W.G.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.1
    • /
    • pp.14-22
    • /
    • 1997
  • The position of propeller fan from duct inlet is one of basic parameters for the design of propeller fan. To investigate the effect of its position on fan characteristics, the inlet flow fields and relative flow angles were measured by a 5-hole pitot tube. The experimental results indicate that the ratio of radial flow introduced from propeller circumference to total inlet flow increases with the increase of propeller distance from duct inlet. When fan operates without duct, the total flow rate and the radial flow ratio are higher than those of any other positions of propeller relative to duct inlet. The radial flow ratio decreases as a flow coefficient and the propeller distance decrease. Therefore the front flow fields can be adjusted in some extent by varying the propeller distance according to a fan loading. The inlet flow angles are decreasing a little as a rotational speed and the propeller distance decrease. In the present case it was judged that the deviation angle of outlet flow became negative owing to a flow separation near a trailing edge.

  • PDF

Nitrogen Removal Characteristics of Swine Wastewater when treating by MLE Process (MLE 공정을 이용한 양돈폐수의 질소 제거 특성)

  • Park, Seung Kyun;Park, Hyun Su;Lee, Ki Gong;Chung, Yoon Jin
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.14 no.2
    • /
    • pp.147-156
    • /
    • 2000
  • In this study, the optimal operation parameters of MLE(Modified Ludzack-Ettinger) process treating the liquid supernatant separated from the slurry excreta of swine feedlot was studied as a promising biological treatment process. The nitrogen removal characteristics with different volume ratio between nitrification and denitrification reactor and the operational effect with different nitrogen loading rate, and different C/N($COD_{Cr}/TKN$) ratio were investigated. Based on the laboratory results, pilot MLE plant was operated to examine the effect of ambient temperature for five months including winter. The denitrification reactor which is 20% of total volume was proposed as the most optimal volume fraction for nitrification and denitrification. The optimum ratios of F/M and $F_N/M$ were increased with increase of the C/N ratio. However, optimum F/M ratio was changed more rapidly than $F_N/M$ ratio with increase of the C/N ratio. Therefore, MLE process is desirable to be controlled by F/M ratio in the range of high C/N ratio and by $F_N/M$ ratio in the range of low C/N ratio. Pilot MLE plant showed the higher removal efficiencies of COD and TKN in winter than in summer and was operated most stably at the temperature of $20{\sim}25^{\circ}C$ for mixed liqour.

  • PDF

Effect of Sports Taping on Impact Forces and Muscle Tuning during Drop Landing (드롭 착지 시 스포츠 테이핑이 하지의 충격력과 근육 조율에 미치는 영향)

  • Kang, Nyeon-Ju;Chae, Woen-Sik
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.2
    • /
    • pp.175-182
    • /
    • 2010
  • The purpose of this study was to evaluate the biomechanical effect of sports taping on the lower limb during drop landing. Twelve male university students who have no musculoskeletal disorder were recruited as the subjects. Principal strain, median frequency, vertical GRF, loading rate, angular velocity and resultant joint moment were determined for each trial. For each dependent variable, paired t-test was performed to test if significant difference existed between taped and untaped conditions(p<.05). The results showed that principal strain of the thigh and the shank in taping group were significantly less than those found in control group. These indicated that sports taping may prevent excessive mechanical strain caused by impact force during the deceleration phase. Flexion(-)-extension(+) and varus(-)-valgus(+) resultant joint moment of the knee joint in taping group were greater than corresponding value for control group. It seems that extensor muscle of the knee joint were not only supported by sports taping during knee flexion but also sports taping is effective for minimizing the possibility of injury.

The Effect of a Wedged Rocker Sole on Ankle Joints during Gait (보행에서 외측 경사진 굽은 밑창이 발목 운동에 미치는 영향 분석)

  • Kwon, Sung-Hyuk;Kim, Choong-Sik;Kim, Hee-Jin;Ryu, Tae-Beum;Chung, Min-Geun
    • Journal of the Ergonomics Society of Korea
    • /
    • v.27 no.3
    • /
    • pp.93-101
    • /
    • 2008
  • Wedged soles and rocker soles are widespread shoe designs used to prevent the disorders and reduce the pain of the lower extremity caused by arthritis or diabetic feet. In this study, the effect of a shoe with a laterally wedged sole and a rocker sole simultaneously was analyzed on the kinematics and kinetics of the ankle joint during normal walking. Eight male participants without a history of lower extremity disorders were recruited. Each participant performed twenty walking cycles for each of three walking conditions: bare foot, wearing normal shoes and wearing shoes with laterally wedged rocker soles. The differences between the three walking conditions were statistically investigated including spatio-temporal variables, angular displacements, joint moments and ground reaction forces. The results showed that the laterally wedged rocker sole decreased the sagittal variation of angular displacements as well as the frontal/sagittal average moment on the ankle joints compared to the flat sole. In addition, the rate of angular displacements and loading decreased during the heel contact phase.

Effect of LiCoO2 Cathode Density and Thickness on Electrochemical Performance of Lithium-Ion Batteries

  • Choi, Jaecheol;Son, Bongki;Ryou, Myung-Hyun;Kim, Sang Hern;Ko, Jang Myoun;Lee, Yong Min
    • Journal of Electrochemical Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.27-33
    • /
    • 2013
  • The consequences of electrode density and thickness for electrochemical performance of lithium-ion cells are investigated using 2032-type coin half cells. While the cathode composition is maintained by 90:5:5 (wt.%) with $LiCoO_2$ active material, Super-P electric conductor and polyvinylidene fluoride polymeric binder, its density and thickness are independently controlled to 20, 35, 50 um and 1.5, 2.0, 2.5, 3.0, 3.5 g $cm^{-3}$, respectively, which are based on commercial lithium-ion battery cathode system. As the cathode thickness is increased in all densities, the rate capability and cycle life of lithium-ion cells become significantly worse. On the other hand, even though the cathode density shows similar behavior, its effect is not as high as the thickness in our experimental range. This trend is also investigated by cross-sectional morphology, porosity and electric conductivity of cathodes with different densities and thicknesses. This work suggests that the electrode density and thickness should be chosen properly and mentioned in detail in any kinds of research works.

A Study on the Effect of the Overload Ratio on the Fatigue Crack Growth Retardation (과대하중비가 균열성장지연에 미치는 영향에 관한 연구)

  • Kim, Kyung-Su;Kim, Sung-Chan;Shim, Chun-Sik;Park, Jin-Young;Cho, Hyung-Min
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.306-311
    • /
    • 2003
  • A growing fatigue crack is known to be retarded on application of an overload cycle. The retardation may be characterized by the total number of cycles involved during retardation and the retarded crack length. The overload ratio plays an important role to influence the retardation behavior. The objective of the present investigation is to study the effect of different overload ratio on the retardation behavior. For DENT(double edge notched tension) specimens and ESET(eccentrically-loaded single edge crack tension) specimens, fatigue crack growth tests are conducted under cyclic constant-amplitude loading including a single tensile overloading with different overload ratios. The proposed crack retardation model predicts crack growth retardation due to a single tensile overloading. The predictions are put into comparison with the experimental results to confirm the reliability of this model.

  • PDF

A STUDY on FOREST FIRE SPREADING ALGORITHM with CALCULATED WIND DISTRIBUTION

  • Song, J.H.;Kim, E.S.;Lim, H.J.;Kim, H.;Kim, H.S.;Lee, S.Y
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.305-310
    • /
    • 1997
  • There are many parameters in prediction of forest fire spread. The variables such as fuel moisture, fuel loading, wind velocity, wind direction, relative humidity, slope, and solar aspect have important effects on fire. Particularly, wind and slope factors are considered to be the most important parameters in propagation of forest fire. Generally, slope effect cause different wind distribution in mountain area. However, this effect is disregarded in complex geometry. In this paper, wind is estimated by applying computational fluid dynamics to the forest geometry. Wind velocity data is obtained by using CFD code with Newtonian model and slope is calculated with geometrical data. These data are applied fer 2-dimentional forest fire spreading algorithm with Korean ROS(Rate Of Spread). Finally, the comparison between the simulation and the real forest fire is made. The algorithm spread of forest fire will help fire fighter to get the basic data far fire suppression and the prediction to behavior of forest fire.

  • PDF

Three-dimensional numerical modeling of effect of bedding layer on the tensile failure behavior in hollow disc models using Particle Flow Code (PFC3D)

  • Sarfarazi, Vahab;Haeri, Hadi
    • Structural Engineering and Mechanics
    • /
    • v.68 no.5
    • /
    • pp.537-547
    • /
    • 2018
  • This research presents the effect of anisotropy of the hollow disc mode under Brazilian test using PFC3D. The Brazilian tensile strength test was performed on the hollow disc specimens containing the bedding layers and then these specimens were numerically modeled by using the two dimensional discrete element code (PFC3D) to calibrate this computer code for the simulation of the cracks propagation and cracks coalescence in the anisotropic bedded rocks. The thickness of each layer within the specimens varied as 5 mm, 10 mm and 20 mm and the layers angles were changed as $0^{\circ}$, $25^{\circ}$, $50^{\circ}$, $75^{\circ}$ and $90^{\circ}$. The diameter of internal hole was taken as 15 mm and the loading rate during the testing process kept as 0.016 mm/s. It has been shown that for layers angles below $25^{\circ}$ the tensile cracks produce in between the layers and extend toward the model boundary till interact and break the specimen. The failure process of the specimen may enhance as the layer angle increases so that the Brazilian tensile strength reaches to its minimum value when the bedding layers is between $50^{\circ}$ and $75^{\circ}$ but its value reaches to maximum at a layer angle of $90^{\circ}$. The number of tensile cracks decreases as the layers thickness increases and with increasing the layers angle, less layer mobilize in the failure process.

Numerical simulation of the effect of bedding layer on the tensile failure mechanism of rock using PFC2D

  • Sarfarazi, Vahab;Haeri, Hadi;Marji, Mohammad Fatehi
    • Structural Engineering and Mechanics
    • /
    • v.69 no.1
    • /
    • pp.43-50
    • /
    • 2019
  • In this research, the effect of bedding layer on the tensile failure mechanism of rocks has been investigated using PFC2D. For this purpose, firstly calibration of PFC2d was performed using Brazilian tensile strength. Secondly Brazilian test was performed on the bedding layer. Thickness of layers were 5 mm, 10 mm and 20 mm. in each thickness layer, layer angles changes from $0^{\circ}$ to $90^{\circ}$ with increment of $15^{\circ}$. Totally, 21 model were simulated and tested by loading rate of 0.016 mm/s. The results show that when layer angle is less than 15, tensile cracks initiates between the layers and propagate till coalesce with model boundary. Its trace is too high. With increasing the layer angle, less layer mobilizes in failure process. Also, the failure trace is very short. It's to be noted that number of cracks decrease with increasing the layer thickness. Also, Brazilian tensile strength is minimum when bedding layer angle is between $45^{\circ}$ and $75^{\circ}$. The maximum one is related to layer angle of $90^{\circ}$.