• Title/Summary/Keyword: Loading Noise

Search Result 342, Processing Time 0.026 seconds

Site effect microzonation of Babol, Iran

  • Tavakoli, H.R.;Amiri, M. Talebzade;Abdollahzade, G.;Janalizade, A.
    • Geomechanics and Engineering
    • /
    • v.11 no.6
    • /
    • pp.821-845
    • /
    • 2016
  • Extensive researches on distribution of earthquake induced damages in different regions have shown that geological and geotechnical conditions of the local soils significantly influence behavior of alluvial areas under seismic loading. In this article, the site of Babol city which is formed up of saturated fine alluvial soils is considered as a case study. In order to reduce the uncertainties associated with earthquake resistant design of structures in this area (Babol city), the required design parameters have been evaluated with consideration of site's dynamic effects. The utilized methodology combines experimental ground ambient noise analysis, expressed in terms of horizontal to vertical (H/V) spectral ratio, with numerical one-dimensional response analysis of soil columns using DEEPSOIL software. The H/V spectral analysis was performed at 60 points, experimentally, for the region in order to estimate both the fundamental period and its corresponding amplification for the ground vibration. The investigation resulted in amplification ratios that were greater than one in all areas. A good agreement between the proposed ranges of natural periods and alluvial amplification ratios obtained through the analytical model and the experimental microtremor studies verifies the analytical model to provide a good engineering reflection of the subterraneous alluviums.

Experimental study on hollow steel-reinforced concrete-filled GFRP tubular members under axial compression

  • Chen, B.L.;Wang, L.G.
    • Steel and Composite Structures
    • /
    • v.32 no.1
    • /
    • pp.59-66
    • /
    • 2019
  • Hollow steel-reinforced concrete-filled GFRP tubular member is a new kind of composite members. Firstly set the mold in the GFRP tube (non-bearing component), then set the longitudinal reinforcements with stirrups (steel reinforcement cage) between the GFRP tube and the mold, and filled the concrete between them. Through the axial compression test of the hollow steel-reinforced concrete-filled GFRP tubular member, the working mechanism and failure modes of composite members were obtained. Based on the experiment, when the load reached the ranges of $55-70%P_u$ ($P_u-ultimate$ load), white cracks appeared on the surface of the GFRP tubes of specimens. At that time, the confinement effects of the GFRP tubes on core concrete were obvious. Keep loading, the ranges of white cracks were expanding, and the confinement effects increased proportionally. In addition, the damages of specimens, which were accompanied with great noise, were marked by fiber breaking and resin cracking on the surface of GFRP tubes, also accompanied with concrete crushing. The bearing capacity of the axially compressed components increased with the increase of reinforcement ratio, and decreased with the increase of hollow ratio. When the reinforcement ratio was increased from 0 to 4.30%, the bearing capacity was increased by about 23%. When the diameter of hollow part was decreased from 55mm to 0, the bearing capacity was increased by about 32%.

Vibration-based method for story-level damage detection of the reinforced concrete structure

  • Mehboob, Saqib;Zaman, Qaiser U.
    • Computers and Concrete
    • /
    • v.27 no.1
    • /
    • pp.29-39
    • /
    • 2021
  • This study aimed to develop a method for the determination of the damaged story in reinforced concrete (RC) structure with ambient vibrations, based on modified jerk energy methodology. The damage was taken as a localized reduction in the stiffness of the structural member. For loading, random white noise excitation was used, and dynamic responses from the finite element model (FEM) of 4 story RC shear frame were extracted at nodal points. The data thus obtained from the structure was used in the damage detection and localization algorithm. In the structure, two damage configurations have been introduced. In the first configuration, damage to the structure was artificially caused by a local reduction in the modulus of elasticity. In the second configuration, the damage was caused, using the Elcentro1940 and Kashmir2005 earthquakes in real-time history. The damage was successfully detected if the frequency drop was greater than 5% and the mode shape correlation remained less than 0.8. The results of the damage were also compared to the performance criteria developed in the Seismostruct software. It is demonstrated that the proposed algorithm has effectively detected the existence of the damage and can locate the damaged story for multiple damage scenarios in the RC structure.

Analysis of Estimated Position Error by Magnetic Saturation and Compensating Method for Sensorless Control of PMSM (자속 포화에 의한 PMSM 센서리스 위치 추정 오차 분석 및 보상 기법)

  • Park, Byung-Jun;Gu, Bon-Gwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.3
    • /
    • pp.430-438
    • /
    • 2019
  • For a pump or a compressor motor, a high periodic load torque variation is induced by the mechanical works, and it causes system vibration and noise. To minimize these problems, load torque compensation method, injecting periodic torque current, could be utilized. However, with the sensorless control method, which is usually utilized in the pump and compressor for low cost, the periodic torque current degrades the accuracy of the rotor position estimation owing to the inductance variation. This paper analyzes the rotor position and speed estimation error of sensorless control method with constant motor parameters under period loading. Assuming the constant speed by the accurate load torque compensation, the speed error equation is derived in frequency domain with inductance depending on the stator current. Further, it is also shown that the rotor position error could be minimized by compensating the inductance variation. The simulation and experimental results verify that the derived speed error model and the validity of the inductance compensation method.

Damage evaluation of seismic response of structure through time-frequency analysis technique

  • Chen, Wen-Hui;Hseuh, Wen;Loh, Kenneth J.;Loh, Chin-Hsiung
    • Structural Monitoring and Maintenance
    • /
    • v.9 no.2
    • /
    • pp.107-127
    • /
    • 2022
  • Structural health monitoring (SHM) has been related to damage identification with either operational loads or other environmental loading playing a significant complimentary role in terms of structural safety. In this study, a non-parametric method of time frequency analysis on the measurement is used to address the time-frequency representation for modal parameter estimation and system damage identification of structure. The method employs the wavelet decomposition of dynamic data by using the modified complex Morlet wavelet with variable central frequency (MCMW+VCF). Through detail discussion on the selection of model parameter in wavelet analysis, the method is applied to study the dynamic response of both steel structure and reinforced concrete frame under white noise excitation as well as earthquake excitation from shaking table test. Application of the method to building earthquake response measurement is also examined. It is shown that by using the spectrogram generated from MCMW+VCF method, with suitable selected model parameter, one can clearly identify the time-varying modal frequency of the reinforced concrete structure under earthquake excitation. Discussions on the advantages and disadvantages of the method through field experiments are also presented.

Behavior Characteristics of Micropile Following the Embedded Condition (근입조건에 따른 마이크로파일의 거동특성)

  • Bang, Seongtaek
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.6
    • /
    • pp.19-25
    • /
    • 2020
  • In the recent downtown works, there are frequent cases where the work on existing piles is impossible due to the influence from lack of space and surrounding environment. In such cases, there has been growing cases of using the micropile method that is available to work with the small equipment and asserts the bearing capacity of the existing piles. The micropile method is a type of drilled shaft with the diameter of a pile to be around 75 mm~300 mm that, even for a case where it has certain surrounding structure, foundation and spatial obstacle, there is almost no work difficulty and the work is feasible under all types of soil conditions. In addition, the work can be done in places where the ceiling of the building is low with less vibration and noise in the work process that such method is significantly used for foundation reinforcement of existing buildings. With respect to the motion characteristics that are changed depending on the foundational characteristics or when the micropile is applied with compression or tensile force, there is very few studies conducted. Therefore, under this study, through the data analysis of the field loading test regarding the micropile worked in the fields, it clarifies the settlement and characteristics of bearing capacity following the embedded condition of the ingredients and piles that consist the foundation if the compression and tensile force are applied to the micropile, and by facilitating the statistical analysis program, SAS, to carry out the analysis on the main elements influencing on settlement of the micropile and bearing capacity.

Transient Torsional Vibration Analysis of Ice-class Propulsion Shafting System Driven by Electric Motor (전기 모터 구동 대빙급 추진 시스템의 과도 비틀림 진동 분석)

  • Barro, Ronald D.;Lee, Don Chool
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.9
    • /
    • pp.667-674
    • /
    • 2014
  • A ship's propulsion shafting system is subjected to varying magnitudes of intermittent loadings that pose great risks such as failure. Consequently, the dynamic characteristic of a propulsion shafting system must be designed to withstand the resonance that occurs during operation. This resonance results from hydrodynamic interaction between the propeller and fluid. For ice-class vessels, this interaction takes place between the propeller and ice. Producing load- and resonance-induced stresses, the propeller-ice interaction is the primary source of excitation, making it a major focus in the design requirements of propulsion shafting systems. This paper examines the transient torsional vibration response of the propulsion shafting system of an ice-class research vessel. The propulsion train is composed of an electric motor, flexible coupling, spherical gears, and a propeller configuration. In this paper, the theoretical analysis of transient torsional vibration and propeller-ice interaction loading is first discussed, followed by an explanation of the actual transient torsional vibration measurements. Measurement data for the analysis were compared with an applied estimation factor for the propulsion shafting design torque limit, and they were evaluated using an existing international standard. Addressing the transient torsional vibration of a propulsion shafting system with an electric motor, this paper also illustrates the influence of flexible coupling stiffness design on resulting resonance. Lastly, the paper concludes with a proposal to further study the existence of negative torque on a gear train and its overall effect on propulsion shafting systems.

Laboratory and Field Performance Evaluation of Acryl Resin Based Solar Radiation Reflective Pavement (아크릴 수지를 이용한 차열성 포장의 실내 및 현장 공용성 평가)

  • So, Kyung-Rock;Lee, Hyun-Jong;Baek, Jong-Eun;Lee, Sang-Yum
    • International Journal of Highway Engineering
    • /
    • v.13 no.4
    • /
    • pp.19-28
    • /
    • 2011
  • This study developed a solar radiation reflection pavement, so called a cool pavement, to lessen the urban heat island effect by coating a pavement surface with acrylic resins mixed with light-colored pigments. From a laboratory test, simulating solar heating process in pavements, the cool pavement reduced more than $12^{\circ}C$ of pavement temperature at $60^{\circ}C$ compared to a control porous pavement. With the increase of the mixing ratio of the pigments to acrylic resins, the temperature reduction effect increased, but its workability became worse due to higher viscosity. As a result, an appropriate mixing ratio was determined as 15%. The cool pavement had better durability than the control pavement: One quarter of Catabro loss and twofold dynamic stability. Its adhesion was also higher enough not to be debonded under traffic loading. In-situ noise and friction tests conducted in two field sites showed that the cool pavement reduced its noise level by 3.7dB in average and increased its friction level by 30% compared to the control pavement. The permeability of the cool pavement was little lower than the control pavement, but higher enough to satisfy the minimum requirement for porous pavements.

Estimation of Structural Strength for Spudcan in the Wind Turbine Installation Vessel (해상풍력발전기 설치선박의 스퍼드캔 구조강도 예측법)

  • Park, Joo-Shin;Lee, Dong-Hun;Seo, Jung-Kwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.1
    • /
    • pp.141-152
    • /
    • 2022
  • As interest increases related to the development of eco-friendly energy, the offshore wind turbine market is growing at an increasing rate every year. In line with this, the demand for an installation vessel with large scaled capacity is also increasing rapidly. The wind turbine installation vessel (WTIV) is a fixed penetration of the spudcan in the sea-bed to install the wind turbine. At this time, a review of the spudcan is an important issue regarding structural safety in the entire structure system. In the study, we analyzed the current procedure suggested by classification of societies and new procedures reflect the new loading scenarios based on reasonable operating conditions; which is also verified through FE-analysis. The current procedure shows that the maximum stress is less than the allowable criteria because it does not consider the effect of the sea-bed slope, the leg bending moment, and the spudcan shape. However, results of some load conditions as defined by the new procedure confirm that it is necessary to reinforce the structure to required levels under actual pre-load conditions. Therefore, the new procedure considers additional actual operating conditions and the possible problems were verified through detailed FE-analysis.

Study on the Bearing Capacity of Helical Pile through Field Load Tests (현장재하시험을 통한 헬리컬파일의 지지력에 관한 연구)

  • Kwon, Gi-Ryeol;Jang, Jeong-Wook;Cho, Song-Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.11
    • /
    • pp.669-675
    • /
    • 2020
  • This research has focused on comparing the capacity predicted by the theoretical formula with the one measured by field load tests to examine characteristics of the bearing capacity of a helical pile. The helical pile is featured by a central shaft with one or more helical-shaped bearing plates. Being established by a small rotary attached to an excavator that applies toque, the helical piles can be readily constructed at narrow sites, especially in an urban area with relatively less noise than the others requiring driving and excavation. Although many cases of the helical pile constructions can be recently found, the bearing capacity of the pile has been limitedly studied. To this end, this contribution analyzes and presents comprehensive results of the ten field loading tests with an application of different parameters depending on joint condition and specification of the helical piles, and types of tests and grouting.