• Title/Summary/Keyword: Loading Modes

Search Result 475, Processing Time 0.022 seconds

Experiment and bearing capacity analyses of dual-lintel column joints in Chinese traditional style buildings

  • Xue, Jianyang;Ma, Linlin;Wu, Zhanjing;Zhai, Lei;Zhang, Xin
    • Steel and Composite Structures
    • /
    • v.28 no.5
    • /
    • pp.641-653
    • /
    • 2018
  • This paper presents experiment and bearing capacity analyses of steel dual-lintel column (SDC) joints in Chinese traditional style buildings. Two SDC interior joints and two SDC exterior joints, which consisted of dual box-section lintels, circular column and square column, were designed and tested under low cyclic loading. The force transferring mechanisms at the panel zone of SDC joints were proposed. And also, the load-strain curves at the panel zone, failure modes, hysteretic loops and skeleton curves of the joints were analyzed. It is shown that the typical failure modes of the joints are shear buckling at bottom panel zone, bending failure at middle panel zone, welds fracturing at the panel zone, and tension failure of base metal in the heat-affected zone of the joints. The ultimate bearing capacity of SDC joints appears to decrease with the increment of axial compression ratio. However, the bearing capacities of exterior joints are lower than those of interior joints at the same axial compression ratio. In order to predict the formulas of the bending capacity at the middle panel zone and the shear capacity at the bottom panel zone, the calculation model and the stress state of the element at the panel zone of SDC joints were studied. As the calculated values showed good agreements with the test results, the proposed formulas can be reliably applied to the analysis and design of SDC joints in Chinese traditional style buildings.

Experiments on reinforced concrete beam-column joints under cyclic loads and evaluating their response by nonlinear static pushover analysis

  • Sharma, Akanshu;Reddy, G.R.;Eligehausen, Rolf;Vaze, K.K.;Ghosh, A.K.;Kushwaha, H.S.
    • Structural Engineering and Mechanics
    • /
    • v.35 no.1
    • /
    • pp.99-117
    • /
    • 2010
  • Beam-column joints are the key structural elements, which dictate the behavior of structures subjected to earthquake loading. Though large experimental work has been conducted in the past, still various issues regarding the post-yield behavior, ductility and failure modes of the joints make it a highly important research topic. This paper presents experimental results obtained for eight beam-column joints of different sizes and configuration under cyclic loads along with the analytical evaluation of their response using a simple and effective analytical procedure based on nonlinear static pushover analysis. It is shown that even the simplified analysis can predict, to a good extent, the behavior of the joints by giving the important information on both strength and ductility of the joints and can even be used for prediction of failure modes. The results for four interior and four exterior joints are presented. One confined and one unconfined joint for each configuration were tested and analyzed. The experimental and analytical results are presented in the form of load-deflection. Analytical plots are compared with envelope of experimentally obtained hysteretic loops for the joints. The behavior of various joints under cyclic loads is carefully examined and presented. It is also shown that the procedure described can be effectively utilized to analytically gather the information on behavior of joints.

The Changes in Range of Motion after a Lumbar Spinal Arthroplasty with Charite$^{TM}$ in the Human Cadaveric Spine under Physiologic Compressive Follower Preload: A Comparative Study between Load Control Protocol and Hybrid Protocol

  • Kim, Se-Hoon;Chang, Ung-Kyu;Chang, Jae-Chil;Chun, Kwon-Soo;Lim, T. Jesse;Kim, Daniel H.
    • Journal of Korean Neurosurgical Society
    • /
    • v.46 no.2
    • /
    • pp.144-151
    • /
    • 2009
  • Objective: To compare two testing protocols for evaluating range of motion (ROM) changes in the preloaded cadaveric spines implanted with a mobile core type Charite$^{TM}$ lumbar artificial disc. Methods: Using five human cadaveric lumbosacral spines (L2-S2), baseline ROMs were measured with a bending moment of 8 Nm for all motion modes (flexion/extension, lateral bending, and axial rotation) in intact spine. The ROM was tracked using a video-based motion-capturing system. After the Charite$^{TM}$ disc was implanted at the L4-L5 level, the measurement was repeated using two different methods: 1) loading up to 8 Nm with the compressive follower preload as in testing the intact spine (Load control protocol), 2) loading in displacement control until the total ROM of L2-S2 matches that when the intact spine was loaded under load control (Hybrid protocol). The comparison between the data of each protocol was performed. Results: The ROMs of the L4-L5 arthroplasty level were increased in all test modalities (p < 0.05 in bending and rotation) under both load and hybrid protocols. At the adjacent segments, the ROMs were increased in all modes except flexion under load control protocol. Under hybrid protocol, the adjacent segments demonstrated decreased ROMs in all modalities except extension at the inferior segment. Statistical significance between load and hybrid protocols was observed during bending and rotation at the operative and adjacent levels (p< 0.05). Conclusion: In hybrid protocol, the Charite$^{TM}$ disc provided a relatively better restoration of ROM, than in the load control protocol, reproducing clinical observations in terms of motion following surgery.

Splice Performance Evaluation of Fastening Coupler According to the Slope Length of Internal Fasteners (조임쇠 경사길이에 따른 체결식 커플러의 이음성능 평가)

  • Jung, Hyun-Suk;Choi, Chang-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.4
    • /
    • pp.11-19
    • /
    • 2022
  • In this study, in order to improve the splice performance of mechanical couplers, two new mechanical couplers with different connection modes were developed with rebar(SD400). The stress analysis of mechanical couplers with two different connection modes was carried out. Uniaxial tensile tests were carried out with type of steel, connection mode and the slope length of internal fastener as variables to analyze the influence on the maximum tensile strength. Building upon this previous work, the specimens that met the code in uniaxial tensile test were fabricated and static loading test and cyclic loading test were performed on the basis of Korean code(KS D 0249). The results of this research are as follows; (1) The tensile strength of steel and the slope length of internal fasteners have a certain influence on the maximum tensile strength. (2) The connection mode has some influence on the stiffness, slip and stiffness reduction rate of the connecting rebars. The results verify the feasibility of the proposed enhanced mechanical coupler in the field.

Effects of Reinforced Fibers on Energy Absorption Characteristics under Quasi-static Compressive Loading of Composite Circular Tubes (강화섬유에 따른 준정적 하중하에서 복합소재 원형튜브의 에너지 흡수특성 평가 연구)

  • Kim, Jung-Seok;Yoon, Huk-Jin;Lee, Ho-Sun;Choi, Kyung-Hoon
    • Composites Research
    • /
    • v.22 no.6
    • /
    • pp.32-38
    • /
    • 2009
  • In this study, the energy absorption capabilities and failure modes of four different kinds of circular tubes made of carbon, Kevlar and carbon-Kevlar hybrid composites with epoxy resin have been evaluated. In order to achieve these goals, these tubes were fabricated with unidirectional prepregs and compressive tests were conducted for the tubes under 10mm/min loading speed. From the test results, carbon/epoxy tubes were collapsed by brittle fracturing mode and showed the best energy absorption capabilities, while Kevlar/epoxy tubes were crushed by local buckling mode and worst. The hybrid [$90_C/0_K$] tubes were failed in a local bucking mode and showed good post crushing integrity, whereas [$90_K/0_C$] tubes were failed in a lamina bending mode and bad post crushing integrity.

A Study on Dynamic Material Properties of Functional High Explosive Formulation Simulant Subjected to Dynamic Loading (동적하중을 받는 기능성 고폭화약조성 시뮬런트 재료물성 연구)

  • Park, Jungsu;Yeom, Kee Sun;Park, Chunghee;Jeong, Sehwan;Lee, Keundeuck;Huh, Hoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.857-866
    • /
    • 2013
  • This paper is concerned with the material properties of functional high explosive(FHX) simulant at various strain rates ranging from $10^{-4}/sec$ to $10^1/sec$. Material properties of FHX at high strain rates are important in prediction of deformation modes of FHX in a warhead which undergoes dynamic loading. Inert FHX stimulant which has analogous mechanical properties with FHX was utilized for material tests due to safety issues. Uniaxial tensile tests at quasi-static strain rates ranging from $10^{-4}/sec$ to $10^{-2}/sec$ and intermediate strain rates ranging from $10^{-1}/sec$ to $10^1/sec$ were conducted with JANNAF specimen using a tensile testing machine, INTRON 5583, and developed high speed material testing machine, respectively. Uniaxial compressive tests at quasi-static strain rates and intermediate strain rates were conducted with cylindrical specimen using a dynamic materials testing machine, INSTRON 8801. And cyclic compressive loading tests were performed with various strain rates and strains. Deformation behaviors were investigated using captured images obtained from a high-speed camera.

Computational evaluation of experimental methodologies of out-of-plane behavior of framed-walls with openings

  • Anic, Filip;Penava, Davorin;Abrahamczyk, Lars;Sarhosis, Vasilis
    • Earthquakes and Structures
    • /
    • v.16 no.3
    • /
    • pp.265-277
    • /
    • 2019
  • Framed masonry wall structures represent a typical high-rise structural system that are also seismically vulnerable. During ground motions, they are excited in both in-plane and out-of-plane terms. The interaction between the frame and the infill during ground motion is a highly investigated phenomenon in the field of seismic engineering. This paper presents a numerical investigation of two distinct static out-of-plane loading methods for framed masonry wall models. The first and most common method is uniformly loaded infill. The load is generally induced by the airbag. The other method is similar to in-plane push-over method, involves loading of the frame directly, not the infill. Consequently, different openings with the same areas and various placements were examined. The numerical model is based on calibrated in-plane bare frame models and on calibrated wall models subjected to OoP bending. Both methods produced widely divergent results in terms of load bearing capabilities, failure modes, damage states etc. Summarily, uniform load on the panel causes more damage to the infill than to the frame; openings do influence structures behavior; three hinged arching action is developed; and greater resistance and deformations are obtained in comparison to the frame loading method. Loading the frame causes the infill to bear significantly greater damage than the infill; infill and openings only influence the behavior after reaching the peak load; infill does not influence initial stiffness; models with opening fail at same inter-storey drift ratio as the bare frame model.

Effective Frequency of External Feedback for Increasing the Percentage of Body Weight Loading on the Affected Leg of Hemiplegic Patients (편마비환자의 환측하지 체중부하율 향상을 위한 효과적인 외적 되먹임 빈도)

  • Noh, Mi-He;Yi, Chung-Hwi;Cho, Sang-Hyun;Kim, Tae-Ue
    • Physical Therapy Korea
    • /
    • v.5 no.3
    • /
    • pp.1-10
    • /
    • 1998
  • In motor learning, the relative frequency of external feedback is the proportion of external feedback presentations divided by the total number of practice trials. In earlier studies, increasing the percentage of body weight loading on the affected leg of hemiplegic patients, external feedback was continuously produced as the patient attempted to perform a movement. This feedback was produced to enhance the learning effect. However, recent studies in nondisabled populations have suggested that compared with 100% relative frequency conditions, practice with lower relative frequencies is more effective. My study compared the effect of 100% relative frequency conditions with 67% relative frequency conditions to determine what effect they exerted on motor learning for increasing the percentage of body weight loading on the affected lower limbs of patients with hemiplegia. Twenty-four hemiplegic patients were randomly assigned to one of two experimental groups. Each group practiced weight transfer motor learning on a machine. During practice, visual feedback was offered to all subjects. The experiment was carried out with full visual feedback for patients in group one but only 67% visual feedback for patients in group two. The percentage of loading on the affected leg was recorded four times: before learning (baseline value), immediately after learning, 30 minutes after learning, 24 hours after learning. The results were as follows: 1. In the 100% visual feedback group, the percentage of loading on the affected leg increased significantly in all three testing modes over the baseline value. 2. In the 67% visual feedback group, the percentage of loading on the affected leg increased significantly in all three measurements. 3. Immediately after learning, the learning effect was not significantly different between the two groups, but was significantly greater after both the 30 minutes delay and the 24 hours period. These results suggest that the 33% reduction in the provision of visual feedback may enhance the learning effect of increasing the percentage of body weight loading on the affected leg in patients with hemiplegia.

  • PDF

A Study on Shear-Fatigue Behavior of Reinforced Concrete Beams using High Strength Concrete (고강도 콘크리트를 사용한 철근콘크리트 보의 전단피로거동에 관한 연구)

  • 곽계환;박종건
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.5
    • /
    • pp.119-130
    • /
    • 1999
  • Recently, as the building structure has been larger, higher, longer and more specialized, the demand of material with high-strength concrete for building has been increasing. In this research, silica-fume was used as an admixture in order to get a high-strength concrete. From the test result, High-strength concrete with cylinder strength of 1,200kgf/$\textrm{cm}^2$ in 28-days was produced and tested. The static test was carried out to measure the ultimate load, the initial load of flexural and diagonal cracking, crack patterns and fracture modes. The load versus strain and load versus deflection relations were obtained from the static test. The relation of cycle loading to deflections on the mid-span, the crack propagation and the modes of failure according to cycle number, fatigue life and S-N curve were observed through the fatigue test. Based on the fatigue test results, high-strength reinforced concrete beams failed to 57~66 percent of the static ultimate strength. Fatigue strength about two million cycles from S-N curves was certified by 60 percent of static ultimate strength.

Investigation of Energy Absorption Property of Glass/Epoxy Composite Tubes with Bevel and Tulip Triggers (베벨 및 튤립 트리거를 갖는 유리섬유 복합소재 튜브의 에너지 흡수특성 평가)

  • Kim, Jung Seok
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.4
    • /
    • pp.395-401
    • /
    • 2017
  • Energy absorption capabilities and failure modes of circular tubes made of glass/epoxy with two trigger mechanisms were evaluated. Three types of glass/epoxy tubes were fabricated using a hand lay-up method with unidirectional and woven fabric prepregs tapes, and a filament winding method. The one end of the fabricated tubes was machined for the bevel trigger and tulip trigger. Then, crush tests were conducted at 10 mm/min loading speed, wherein the glass/epoxy tubes were crushed by a brittle fracturing mode combined with fragmentation and lamina-splaying modes. The UD glass/epoxy tubes with a bevel trigger and the filament winded tubes with a tulip trigger showed the maximum and minimum specific energy absorptions, respectively, with a difference of 9.3%. The tube with a tulip trigger exhibited a maximum reduction of 5.7% in the initial peak load; the tube with a bevel trigger showed a maximum increase of 2.9% in the specific energy absorption.