• Title/Summary/Keyword: Loading Method

Search Result 4,588, Processing Time 0.031 seconds

Effects of the Loading Rate and Humidity in the Fracture Toughness Testing of Alumina

  • Cho, Seong-Jai;Kim, Jai-Chun;Yoon, Kyung-Jin;Chu, Min-Cheol;Lee, Yoon-Cheol;Quinn George;Lee, Hong-Lim
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.1 s.284
    • /
    • pp.4-9
    • /
    • 2006
  • To test the fracture toughness of alumina; a Surface-Crack-in-Flexure (SCF) method, a Single-Edge-Precracked-Beam (SEPB) method and a Single-Edge-V-Notched-Beam (SEVNB) method were used at crosshead rates ranging from 0.005 mm/min to 2 mm/ min and relative humidity ranging from $15\%\;to\;80\%$. The results show that the fracture toughness tested by the SCF method increases with either an increasing loading rate or decreasing relative humidity; in contrast, the toughness by the SEPB method and the SEVNB method does not depend on the loading rate or the relative humidity. Theoretical analysis of the way slow crack growth affects the apparent fracture toughness indicates that the three testing methods have different effects with respect to the loading rate and the relative humidity; moreover, these differences are attributable to differences in the size of the cracks or notches.

Prediction of Shear Behavior of Reinforced Concrete Panels Subjected to Reversed Cyclic Loading (반복하중을 받는 철근 콘크리트 막요소의 전단거동 예측)

  • 이정윤
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.105-110
    • /
    • 2002
  • This paper proposes an analytical method to predict the behavior of reinforced concrete beams subjected to reversed cyclic loading. The proposed method is based on the compatibility aided truss model and adopts the stress vs. strain curve of concrete which considers the softening effects. This model Is verified by comparing to the six reinforced concrete panel tests.

  • PDF

Fatigue Test Method for RC Beam Under Random Loading (랜덤하중에 의한 RC보의 피로시험법에 관한 연구)

  • 권혁문;사림신장;정상정일
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.10a
    • /
    • pp.179-183
    • /
    • 1993
  • Loads acting on concrete structures are completely random in nature with respect to frequency, magnitude and order of loading, and are essentially distinct from the loads in two-stage and variable load fatigue test. Thus, this study proposes the fatigue test method generating random loads based on the analyzed result.

  • PDF

Improvement of Straw Loading Method on Survival of Mouse IVF/IVC Blastocysts Cryopreserved by Vitrification (체외수정과 체외배양에서 생산된 생쥐 배반포기배의 초자화 동결에 있어서 Straw Loading 방법의 개선)

  • 김선의;엄상준;김은영;윤산현;박세필;임진호
    • Korean Journal of Animal Reproduction
    • /
    • v.20 no.1
    • /
    • pp.35-42
    • /
    • 1996
  • This study was carried out to investigate the effect of straw loading method and thawing protocol on the in vitro development of in vitro produced mouse blastocysts cryopreserved by vitrification. Three loading types of straw I, Il and III on loading and sealing method were made for vitrification. The ability of the solution on straw loading methods to remain vitreous during warming was tested by exposed in air for 1 to 10 s sec. and then plunged the vitrified straws into water bath at 25°C. Embryos to be vitrified were equilibrated to the 20% EG for 5min. and exposed in EFS 40 for 1min. The plug ends of Straw I and Straw II were sealed with straw powder and Straw III was treated straw powder, followed by heat sealing and then plunged into LN$_2$. The results obtained in these experiments were summarized as follows; 1) Straw I embryo column mostly changed from transparent to opaque upon thawing without exposure in air for 3-6 sec. Straw II embryo column was I improved partially but was not remained completely vitreous during warming. However, when Straw lll loading method was used, the embryo column was remained vitreous completely. 2) High survival rates and development rates of each groups (middle blastocysts and hatching blastocysts) of vitrified embryos were obtained by using Straw III loading method than Straw I method (P<0.05). And the range of s standard error was low in Straw lll method. 3) When the embryos vitrified-frozen were placed in air for 3, 5 and l0sec. and then warmed rapidly in water bath at 25$^{\circ}C$, the survival rates after 24h of culture were 72.7-87.1% and the development rates to hatching stage after 48h of culture were 34.0-48.4%. There were no significantly differences according to exposure time in air during warming. In conclusion, the present results showed that highly survival and low standard error of vitrified-frozen mouse bIastocysts were obtained by using straw lll loading, double sealing and appropriate 2 step warming method.

  • PDF

Strengthening Effect of Reinforced Concrete Beam at Different Loading Stages (재하상태에 따른 철근콘크리트 보의 보강효과)

  • 이차돈;이학주
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.733-739
    • /
    • 1999
  • A theoretical model for flexural behavior of strengthened reinforced concrete beam is developed based on displacement controlled nonlinear finite element method in this study. The developed model is shown to reasonably reproducing the experimental results of variously strengthened reinforced concrete beam. Parametric studies for the strengthened reinforced concrete beam at different loading stages are then performed using this model in order to assess the effect of loading stages at the time of strengthening on characteristic values of strengthened beam under flexure. It was found that depending on loading stages of a beam, deflections at yielding and at ultimate loads are more influenced than corresponding load capacities.

Development of implant loading device for animal study about various loading protocol: a pilot study

  • Yoon, Joon-Ho;Park, Young-Bum;Cho, Yuna;Kim, Chang-Sung;Choi, Seong-Ho;Moon, Hong-Seok;Lee, Keun-Woo;Shim, June-Sung
    • The Journal of Advanced Prosthodontics
    • /
    • v.4 no.4
    • /
    • pp.227-234
    • /
    • 2012
  • PURPOSE. The aims of this pilot study were to introduce implant loading devices designed for animal study and to evaluate the validity of the load transmission ability of the loading devices. MATERIALS AND METHODS. Implant loading devices were specially designed and fabricated with two implant abutments and cast metal bars, and orthodontic expansion screw. In six Beagles, all premolars were extracted and two implants were placed in each side of the mandibles. The loading device was inserted two weeks after the implant placement. According to the loading protocol, the load was applied to the implants with different time and method, simulating early, progressive, and delayed loading. The implants were clinically evaluated and the loading devices were removed and replaced to the master cast, followed by stress-strain analysis. Descriptive statistics of remained strain (${\mu}{\varepsilon}$) was evaluated after repeating three cycles of the loading device activation. Statistic analysis was performed using nonparametric, independent t-test with 5% significance level and Friedman's test was also used for verification. RESULTS. The loading devices were in good action. However, four implants in three Beagles showed loss of osseointegration. In stress-strain analysis, loading devices showed similar amount of increase in the remained strain after applying 1-unit load for three times. CONCLUSION. Specialized design of the implant loading device was introduced. The loading device applied similar amount of loads near the implant after each 1-unit loading. However, the direction of the loads was not parallel to the long axis of the implants as predicted before the study.

The Application of the Medified Distinct Element Method to Wave Propagation in Structures with Discontinuous Faces (수정개별요소법에 의한 불연속 구조체의 파전달 거동 해석)

  • 김문겸;오금호;김우진
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.04a
    • /
    • pp.232-239
    • /
    • 1997
  • The phenomenology of shock loading effects in brittle mass has been of interest to researchers and engineers. The shock loading as blasting causes strong stress waves in the structures. Discontinuous faces due to shock waves interrupt the tensile stress wave propagation and reflect the stress wave propagation. To predict the fracturing behavior of brittle mass, it is required for the numerical method that can analyze the colliding and slipping behavior of discontinuous faces and the wave propagation in the mass, simultaneously In this study, the wave propagation in the brittle materials is analyzed using the modified distinct element method to be able to predict the behavior of discontinuous structures. The behavior of an unsupported bar subjected to loading at the end is analyzed to verify the rigid body motion of a bar and the relative displacement in the bar. The colliding behavior of two bars is analyzed to investigate the propagation of stress waves in the bar. The fracturing behavior of a bar due to impact loading is analyzed to investigate the propagation of stress waves in the bar with and without the discontinuous faces. The applicability of the modified distinct element method to the wave propagation problems is investigated.

  • PDF

Instability and vibration analyses of FG cylindrical panels under parabolic axial compressions

  • Kumar, Rajesh;Dey, Tanish;Panda, Sarat K.
    • Steel and Composite Structures
    • /
    • v.31 no.2
    • /
    • pp.187-199
    • /
    • 2019
  • This paper presents the semi-analytical development of the dynamic instability behavior and the dynamic response of functionally graded (FG) cylindrical shallow shell panel subjected to different type of periodic axial compression. First, in prebuckling analysis, the stresses distribution within the panels are determined for respective loading type and these stresses are used to study the dynamic instability behavior and the dynamic response. The prebuckling stresses within the shell panel are the same as applied in-plane edge loading for the case of uniform and linearly varying loadings. However, this is not true for the case of parabolic loadings. The parabolic edge loading produces all the stresses (${\sigma}_{xx}$, ${\sigma}_{yy}$ and ${\tau}_{xy}$) within the FG cylindrical panel. These stresses are evaluated by minimizing the membrane energy via Ritz method. Using these stresses the partial differential equations of FG cylindrical panel are formulated by applying Hamilton's principal assuming higher order shear deformation theory (HSDT) and von-$K{\acute{a}}rm{\acute{a}}n$ non-linearity. The non-linear governing partial differential equations are converted into a set of Mathieu-Hill equations via Galerkin's method. Bolotin method is adopted to trace the boundaries of instability regions. The linear and non-linear dynamic responses in stable and unstable region are plotted to know the characteristics of instability regions of FG cylindrical panel. Moreover, the non-linear frequency-amplitude responses are obtained using Incremental Harmonic Balance (IHB) method.

A Study on the Optimal Pre-loading Calculation of Strut of Retaining Wall through Numerical Interpretation (수치해석을 통한 흙막이벽체 버팀보의 최적 선행하중 산정에 관한 연구)

  • Moon, In Jong;Jang, Seung Ju;Lee, Kang Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.2
    • /
    • pp.45-56
    • /
    • 2021
  • As the utilization of the underground space is activated, deep excavation of ground has been conducted for the installation of underground structures, the earth retaining wall has widely used to minimize deformation of the excavated ground. In particular, as deep excavation is actively progressing in an urban area where structures are concentrated, methods to minimize the deformation of wall have been devised to prevent damage to the structure adjacent to the wall, and one of these methods is the pre-loading method. This method is a method of suppressing the deformation of wall by actively applying a load on the strut to be installed in wall, and research on this method has been conducted recently. However, although related studies have been actively conducted, the management standard for the pre-loading of bracing has not been clearly presented until now. In addition, since the working force in the strut may increase depending on the depth of excavation or the soil condition of the backfill, the magnitude of the pre-loading that can be applied to the brace may decrease. Nevertheless, the magnitude of the pre-loading (more than 50% of the working load) proposed by the previous research results has been uniformly applied to the strut. In this study, 3D finite element analysis was performed to evaluate the application range of the pre-loading of H-beam strut according to the soil conditions of backfill. As a result of the analysis, it was found that there is a very high possibility that a problem may occur in the stability of the structure of strut due to the earth pressure and the pre-loading when the soil condition is weak and deep excavation proceeds. And it was found that the application range of the pre-loading was 5%~70% of the working load in strut.

Comparison of elastic buckling loads for liquid storage tanks

  • Mirfakhraei, P.;Redekop, D.
    • Steel and Composite Structures
    • /
    • v.2 no.3
    • /
    • pp.161-170
    • /
    • 2002
  • The problem of the elastic buckling of a cylindrical liquid-storage tank subject to horizontal earthquake loading is considered. An equivalent static loading is used to represent the dynamic effect. A theoretical solution based on the nonlinear Fl$\ddot{u}$gge shell equations is developed, and numerical results are found using the new differential quadrature method. A second solution is obtained using the finite element package ADINA. A major motivation of the study was to show that the new method can serve to verify finite element solutions for cylindrical shell buckling problems. For this purpose the paper concludes with a comparison of buckling results for a number of cases covering a wide range in tank geometry.