• Title/Summary/Keyword: Load-velocity Characteristics

Search Result 317, Processing Time 0.023 seconds

An Experimental Study for the Design of Household-Storage Facilities (부엌 수납장 설계 기준 설정을 위한 기초적 연구)

  • 최재순
    • Journal of the Korean Home Economics Association
    • /
    • v.20 no.4
    • /
    • pp.155-168
    • /
    • 1982
  • What is attempted here is to find out an optimum method for the design of physical environments that could save human energy expenditures and safely perform household duties. There are, if any, very little amount of research done in this area. This is particulary so when the work relates to the designing of household storage facilities in the light of the energy metabolism of human body. The first step to this study, therefore, is to find out the ways by which we can determine the energy metabolism of human body accurately. To measure the volume and the concentration of human respiration continuously and automatically, a new apparatus is selected here. This includes the recording system with the Wright Respirometer and the Expired Gas Analyzer as well as the computer system to multiply volume by concentration of human respiration and to integrate them for a given time. Then, the author experimented on the reliability of this apparatus and came to the conclusion that this apparatus satisfied our need to research the energy metabolism of human body. Next, the general plan and procedures to experiment with this apparatus have been determined as follows: 1) subjects are three young and sound females. Their physical characteristics are shown in Table 1 and most approximates the standard characteristics of Japanese females, 2) height of open shelves is selected in such away as to correspond to the respective height of each subject(see Table 2), 3) utensils to be stored are box shaped object, which weight is 0.5kg, 1.0kg, 2.0kg or 3.0kg, 4) working motions are given while one or two hands as to place utensil on each shelf from the standard working board, 85 cm in height and then to place back it on the board from the shelf and repeated in constant velocity as 10 times per a minute, 5) each posture of motion is chosen by each subject in free, 6) procedures of measurement of human energy metabolism ard shown at(6), 1, Section 3 as specific methods for using this apparatus. Findings of this study are as follows: 1. Human energy expenditures for storing utensils on shelves by each subject are shown in quantity more accurately than in any other studies, under varying conditions about height of shelves, load of utensils and working motion with one hand and two hands (see Fig. 8~13 and Table 3). 2. Experimental formulae of human energy expenditure for that work are shown as formula (8), (9) and (10), to generalize results of 1. and to apply those for working motion under given conditions. 3. As results of analysis on gained data, we are able to show the standard model of human energy expenditures for storing untensils on shelves by the standard Japanese female (see Table 7 and Fig. 14).

  • PDF

Characteristics of Rigid-Soft Particle Mixtures with Size Ratio (입자크기비에 따른 강-연성 혼합재의 공학적 특성)

  • Lee, Chang-Ho;Yoon, Hyung-Koo;Kim, Rae-Hyun;Lee, Woo-Jin;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.8
    • /
    • pp.125-135
    • /
    • 2008
  • Rigid-soft particle mixtures, which consist of sand and rubber, are investigated for the understanding of the stress-deformation and elastic moduli. Specimens are prepared with various size ratio sr between sand and rubber particles, and different volumetric sand fraction sf. Small strain shear waves are measured under $K_o$-loading condition incorporated with the stress-deformation test by using oedometer cell with bender elements. The stress-deformation and small strain shear wave characteristics of rigid-soft particle mixtures show the transition from a rigid particle behavior regime to a soft particle behavior regime under fixed size ratio. A sudden rise of $\Lambda$ factor and the maximum value of the $\zeta$ exponent in $G_{max}=\;{\Lambda}({\sigma}'_{o}/kPa)^{\zeta}$ are observed at $sf\;{\approx}\;0.4{\sim}0.6$ regardless of the size ratio sf. Transition mixture shows high sensitivity to confining stress. The volume fraction for the minimum porosity may depend on the applied stress level in the rigid-soft particle mixtures because the soft rubber particles easily distort under load. In this experimental study, the size ratio and volumetric sand fraction are the important factors which determine the behavior of rigid and soft particle mixtures.

The Effect on the Lower Limbs Joint as the Landing Height and Floor Pattern (착지 높이와 지면 형태가 하지 관절에 미치는 영향)

  • Kim, Eun-Kyong
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.4
    • /
    • pp.437-447
    • /
    • 2011
  • In this study, the lower limbs joints were analyzed for features based on the biomechanical characteristics of landing techniques according to height and landing on the ground type (flats and downhill). In order to achieve the objectives of the study, changes were analyzed in detail contents such as the height and form of the first landing on the ground at different angles of joints, torso and legs, torso and legs of the difference in the range of angular motion of the joint, the maximum angular difference between joints, the lower limbs joints difference between the maximum moment and the difference between COM changes. The subjects in this study do not last six months did not experience joint injuries 10 males in 20 aged were tested. Experimental tools to analyze were the recording and video equipment. Samsung's SCH-650A model camera was used six units, and the 2 GRF-based AMTI were used BP400800 model. 6-unit-camera synchronized with LED (photo cell) and Line Lock system were used. the output from the camera and the ground reaction force based on the data to synchronize A/D Syc. box was used. To calculate the coordinates of three-dimensional space, $1m{\times}3m{\times}2m$ (X, Y, Z axis) to the size of the control points attached to the framework of 36 markers were used, and 29 where the body was taken by attaching a marker to the surface. Two kinds of land condition, 40cm and 60cm in height, and ground conditions in the form of two kinds of flat and downhill slopes ($10^{\circ}$) of the landing operation was performed and each subject's 3 mean two-way RM ANOVA in SPSS 18.0 was used and this time, all the significant level was set at a=.05. Consequently, analyzing the landing technique as land form and land on the ground, the changes of external environmental factors, and the lower limbs joints' function in the evaluation were significantly different from the slopes. Landing of the slop plane were more load on the joints than landing of plane. Especially, knee extensor moment compared to the two kinds of landing, slopes plane were approximately two times higher than flat plane, and it was statistical significance. Most of all not so much range of motion and angular velocity of the shock to reduce stress was important. In the further research, front landing as well as various direction of motion of kinetic, kinetic factors and EMG variables on lower limbs joints of the study in terms of injury-prevention-approach is going to be needed.

Analysis of Wind Velocity Profile for Calculation of Wind Pressure on Greenhouse (온실의 풍압력 산정을 위한 풍속의 수직분포 분석)

  • Jung, Seung-Hyeon;Lee, Jong-Won;Lee, Si-Young;Lee, Hyun-Woo
    • Journal of Bio-Environment Control
    • /
    • v.24 no.3
    • /
    • pp.135-146
    • /
    • 2015
  • To provide the data necessary to determine the design wind speed for calculating the wind load acting on a greenhouse, we measured the wind speed below 10m height and analyzed the power law exponents at Buan and Gunwi. A wind speed greater than $5m{\cdot}s^{-1}$ is appropriate for calculating the power law exponent necessary to determine the wind speed distribution function according to height. We observed that the wind speed increased according to a power law function with increased height at Buan, showing a similar trend to the RDC and JGHA standards. Therefore, this result should be applied when determining the power law function for calculating the design wind speed of the greenhouse structure. The ordinary trend is that if terrain roughness increases the value of power law exponent also increases, but in the case of Gunwi the value of power law exponent was 0.06, which shows contrary value than that of the ordinary trend. This contrary trend was due to the elevations difference of 2m between tower installed and surrounding area, which cause contraction in streamline. The power law exponent started to decrease at 7 am, stopped decreasing and started to increase at 3 pm, and stopped increasing and remained constant at 12 pm at Buan. These changes correspond to the general change trends of the power law exponent. The calculated value of the shape parameter for Buan was 1.51, confirming that the wind characteristics at Buan, a reclaimed area near the coast, were similar to those of coastal areas in Jeju.

Structural Analysis for Constructing a Balloon Type Extracoporeal Membrane Oxygenator using CFD Analysis (CFD 해석을 이용한 Balloon형 인공심폐기 설계를 위한 구조적 해석)

  • Park, Young-Ran;Shim, Jeong-Yeon;Kim, Gi-Beum;Kim, Shang-Jin;Kang, Hyung-Sub;Kim, Jin-Shang;Kim, Min-Ho;Hong, Chul-Un;Kim, Seong-Jong
    • Korean Chemical Engineering Research
    • /
    • v.49 no.2
    • /
    • pp.238-243
    • /
    • 2011
  • In this study, we attempted a structural analysis in order to design a balloon type extracorporeal membrane oxygenator that can induce blood flow without using blood pumps for the purpose of complementing the weakness in the existing extracorporeal membrane oxygenator. To analyze the flow characteristic of the blood flow within the virtual model of extracorporeal membrane oxygenator, computational fluid dynamics(CFD) modeling method was used. The operating principle of this system is to make the surface of the extracorporeal membrane oxygenator keep contracting and dilating regularly by applying pressure load using a balloon, and the 'ime Function Value'that changes according to the time was applied by calculating a half cycle of sine waveform and a cycle of sine.waveform Under the assumption that the uni-directional blood flow could be induced if the balloon type extracorporeal membrane oxygenator was designed as per the method described above, we conducted a structural analysis accordingly. We measured and analyzed the velocity and pressure of blood flow at both inlet and outlet of the extracorporeal membrane oxygenator through CFD simulation. As a result of the modeling, it was confirmed that there was a flow in accord with the direction of the blood by the contraction/dilation. With CFD simulation, the characteristics of blood flow can be predicted in advance, so it is judged that this will be able to provide the most optimized design in producing an extracorporeal membrane oxygenator.

Comparison Study of the Impact Response Characteristics of Fixed Cylindrical Offshore Structures Considering Seawater Fluid Region (해수유체영역을 고려한 고정식 실린더형 해양구조물의 충격응답특성 비교연구)

  • Lee, Kangsu;Hong, Keyyong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.489-494
    • /
    • 2015
  • This research focused on minimizing the response of fixed cylindrical offshore structures to a ship impact considering the seawater fluid part. A collision between a ship and offshore structure is generally a complex problem and it is often impractical to perform rigorous finite element analyses to include all the effects and sequences during the collision. The structural behavior of a fixed cylindrical type offshore substructure with a seawater fluid part has a simpler response and small deformation due to the dissipation of impact energy. Upon applying the impact force of a ship to the cylindrical structure, the maximum acceleration, internal energy, and plastic strain are calculated for each load cases using Ls-dyna finite element software. In the maximum cases 2.0 m/s velocity, the response result for the structure was carried out to compare between having a fluid region and no fluid region. Fluid-structure interaction analysis was performed using the ALE method, which make it possible to apply a fluid region on the impact problem. The case of a fixed cylindrical type offshore structure without a seawater fluid part can be a more conservative design.

Characteristics of Engineered Soils (Engineered Soils의 특성)

  • Lee, Jong-Sub;Lee, Chang-Ho;Lee, Woo-Jin;Santamarina, J. Caries
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.8
    • /
    • pp.129-136
    • /
    • 2006
  • Engineered mixtures, which consist of rigid sand particles and soft fine-grained rubber particles, are tested to characterize their small and large-strain responses. Engineered soils are prepared with different volumetric sand fraction, sf, to identify the transition from a rigid to a soft granular skeleton using wave propagation, $K_{o}-loading$, and triaxial testing. Deformation moduli at small, middle and large-strain do not change linearly with the volume fraction of rigid particles; instead, deformation moduli increase dramatically when the sand fraction exceeds a threshold value between sf=0.6 to 0.8 that marks the formation of a percolating network of stiff particles. The friction angle increases with the volume fraction of rigid particles. Conversely, the axial strain at peak strength increases with the content of soft particles, and no apparent peak strength is observed in specimens when sand fraction is less than 60%. The presence of soft particles alters the formation of force chains. While soft particles are not part of high-load carrying chains, they play the important role of preventing the buckling of stiff particle chains.