• Title/Summary/Keyword: Load-lateral displacement

Search Result 433, Processing Time 0.034 seconds

Effect of vertical reinforcement connection level on seismic behavior of precast RC shear walls: Experimental study

  • Yun-Lin Liu;Sushil Kumar;Dong-Hua Wang;Dong Guo
    • Earthquakes and Structures
    • /
    • v.26 no.6
    • /
    • pp.449-461
    • /
    • 2024
  • The vertical reinforcement connection between the precast reinforced concrete shear wall and the cast-in-place reinforced concrete member is vital to the performance of shear walls under seismic loading. This paper investigated the structural behavior of three precast reinforced concrete shear walls, with different levels of connection (i.e., full connection, partial connection, and no connection), subjected to quasi-static lateral loading. The specimens were subjected to a constant vertical load, resulting in an axial load ratio of 0.4. The crack pattern, failure modes, load-displacement relationships, ductility, and energy dissipation characteristics are presented and discussed. The resultant seismic performances of the three tested specimens were compared in terms of skeleton curve, load-bearing capacity, stiffness, ductility, energy dissipation capacity, and viscous damping. The seismic performance of the partially connected shear wall was found to be comparable to that of the fully connected shear wall, exhibiting 1.7% and 3.5% higher yield and peak load capacities, 9.2% higher deformability, and similar variation in stiffness, energy dissipation capacity and viscous damping at increasing load levels. In comparison, the seismic performance of the non-connected shear wall was inferior, exhibiting 12.8% and 16.4% lower loads at the yield and peak load stages, 3.6% lower deformability, and significantly lower energy dissipation capacity at lower displacement and lower viscous damping.

Assessment of deformations and internal forces in the suspension bridge under eccentric live loads: Analytical algorithm

  • Zhang, Wenming;Lu, Xiaofan;Chang, Jiaqi;Tian, Genmin;Xia, Lianfeng
    • Structural Engineering and Mechanics
    • /
    • v.80 no.6
    • /
    • pp.749-765
    • /
    • 2021
  • Suspension bridges bear large eccentric live loads in rush hours when most vehicles travel in one direction on the left or right side of the bridge. With the increasing number and weight of vehicles and the girder widening, the eccentric live load effect on the bridge behavior, including bending and distortion of the main girder, gets more pronounced, even jeopardizing bridge safety. This study proposes an analytical algorithm based on multi-catenary theory for predicting the suspension bridge responses to eccentric live load via the nonlinear generalized reduced gradient method. A set of governing equations is derived to solve the following unknown values: the girder rigid-body displacement in the longitudinal direction; the horizontal projection lengths of main cable's segments; the parameters of catenary equations and horizontal forces of the side span cable segments and the leftmost segments of middle span cables; the suspender tensions and the bearing reactions. Then girder's responses, including rigid-body displacement in the longitudinal direction, deflections, and torsion angles; suspenders' responses, including the suspender tensions and the hanging point displacements; main cables' responses, including the horizontal forces of each segment; and the longitudinal displacement of the pylons' tower top under eccentric load can be calculated. The response of an exemplar suspension bridge with three spans of 168, 548, and 168 m is calculated by the proposed analytical method and the finite element method in two eccentric live load cases, and their results prove the former's feasibility. The nonuniform distribution of the live load in the lateral direction is shown to impose a greater threat to suspension bridge safety than that in the longitudinal direction, while some other specific features revealed by the proposed method are discussed in detail.

P-y Curves from Large Displacement Borehole Testmeter for Railway Bridge Foundation (장변위공내재하시험기를 이용한 철도교 기초의 P-y곡선에 관한 연구)

  • Ryu, Chang-Youl;Lee, Seul;Kim, Dae-Sang;Cho, Kook-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.836-842
    • /
    • 2011
  • The lateral stability of bridge foundations against train moving load, emergency stopping load, earthquakes, and so on is very important for a railway bridge foundation. A borehole test is much more accurate than laboratory tests since it is possible to minimize the disturbance of ground conditions on the test site. The representative borehole test methods are Dilatometer, Pressuremeter and Lateral Load Tester, which usually provide force-resistance characteristics in elastic range. In order to estimate P-y curves using those methods, the non-linear characteristics of soil which is one of the most important characteristics of the soil cannot be obtained. Therefore, P-y curves are estimated usually using elastic modulus ($E_O$, $E_R$) of lateral pressure-deformation ratio obtained within the range of elastic behavior. Even though the pile foundation is designed using borehole tests in field to increase design accuracy, it is necessary to use a higher safety factor to improve the reliability of the design. A Large Displacement Borehole Testmeter(LDBT) is developed to measure nonlinear characteristics of the soil in this study. P-y curves can be directly achieved from the developed equipment. Comparisons between measured P-y curves the LDBT developed equipment, theoretical methods based on geotechnical investigations, and back-calculated P-y curves from field tests are shown in this paper. The research result shows that the measured P-y curves using LDBT can be properly matched with back-calculated P-y curves from filed tests by applying scale effects for sand and clay, respectively.

  • PDF

Simplified Moment-Curvature Relationship Model of Reinforced Concrete Columns Considering Confinement Effect (구속효과를 고려한 철근 콘크리트 기둥의 모멘트-곡률 관계 단순모델)

  • Kwak, Min-Kyoung;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.3
    • /
    • pp.279-288
    • /
    • 2016
  • The present study simplified the moment-curvature relationship to straightforwardly determine the flexural behavior of reinforced concrete (RC) columns. For the idealized column section, moments and neutral axis depths at different stages(first flexural crack, yielding of tensile reinforcing bar, maximum strength, and 80% of the maximum strength at the descending branch) were derived on the basis of the equilibrium condition of forces and compatibility condition. Concrete strains at the extreme compression fiber beyond the maximum strength were determined using the stress-strain relationship of confined concrete, proposed by Kim et al. The lateral load-displacement curves converted from the simplified moment-curvature relationship of columns are well consistent with test results obtained from column specimens under various parameters. The moments and the corresponding neutral axis depth at different stages were formulated as a function of longitudinal reinforcement and transverse reinforcement indices and/or applied axial load index. Overall, curvature ductility of columns was significantly affected by the axial load level as well as concrete compressive strength and the amount of longitudinal and transverse reinforcing bars.

Nonlinear Analysis of a Circular CFT Column Considering Confining Effects (구속 효과를 고려한 원형 CFT 기둥의 비선형 해석)

  • Han, Taek-Hee;Won, Deok-Hee;Yi, Gyu-Sei;Kang, Young-Jong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.6
    • /
    • pp.1-9
    • /
    • 2009
  • An analysis program to predict the behavior of a concrete filled steel tube column (CFT) was developed. It considered confining effect, material nonlinearity, strain hardening of steel, and initial axial load. With the developed program, axial load-bending moment interaction analyses, moment-lateral displacement relation analyses, and lateral load-lateral displacement relation analyses were performed. For the verification of the developed program, analysis results were compared with the test results from the other researches. The verified results showed that the developed program predicted the behavior of the CFT column with agreeable accuracy. And they showed that it is necessary to consider the confining effect for the reasonable analysis of the CFT column. A simple parametric study was performed and it chose the strength of unconfined concrete and the thickness of a steel tube as the major parameters affecting the behavior of the CFT column. The parametric analysis results showed that the CFT column had higher strength and smaller ductility by increasing the strength of concrete. But the CFT column showed higher strength and larger ductility by increasing the thickness of the steel tube.

Lateral Earth Pressures and Displacements through Full Scaled Lateral Loading Test of Concrete Electric Pole Embedded in Ground (지중에 근입된 콘크리트전주의 실물 수평재하실험에 의한 수평토압과 변위특성)

  • Ahn, Tae-Bong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.4
    • /
    • pp.43-51
    • /
    • 2011
  • Many electric poles in the softground have been collapsed due to external load. In this study, 10 types of tests were performed with variation of location, numbers and depths of anchor blocks as well as depth of poles to find horizontal earth pressure through full scale pull-out tests. The horizontal earth pressure increased with embedded depth of electric pole, and earth pressure of lower passive zone decreased. The deeper of anchor block, earth pressure of passive zone becomes less. lateral displacements showed differences depending on location, numbers and depth of poles. The bending is generated in the upper part at the initial load, but it moved to central part as load increased. The maximum horizontal displacement decreased to 1/1.6 at -0.5m depth of anchor block and 1.3m additional laying depth of poles into ground.

Study on the performance indices of low-strength brick walls reinforced with cement mortar layer and steel-meshed cement mortar layer

  • Lele Wu;Caoming Tang;Rui Luo;Shimin Huang;Shaoge Cheng;Tao Yang
    • Earthquakes and Structures
    • /
    • v.24 no.6
    • /
    • pp.439-453
    • /
    • 2023
  • Older brick masonry structures generally suffer from low strength defects. Using a cement mortar layer (CML) or steel-meshed cement mortar layer (S-CML) to reinforce existing low-strength brick masonry structures (LBMs) is still an effective means of increasing seismic performance. However, performance indices such as lateral displacement ratios and skeleton curves for LBMs reinforced with CML or S-CML need to be clarified in performance-based seismic design and evaluation. Therefore, research into the failure mechanisms and seismic performance of LBMs reinforced with CML or S-CML is imperative. In this study, thirty low-strength brick walls (LBWs) with different cross-sectional areas, bonding mortar types, vertical loads, and CML/S-CML thicknesses were constructed. The failure modes, load-carrying capacities, energy dissipation capacity and lateral drift ratio limits in different limits states were acquired via quasi-static tests. The results show that 1) the primary failure modes of UBWs and RBWs are "diagonal shear failure" and "sliding failure through joints." 2) The acceptable drift ratios of Immediate Occupancy (IO), Life Safety (LS), and Collapse Prevention (CP) for UBWs can be 0.04%, 0.08%, and 0.3%, respectively. For 20-RBWs, the acceptable drift ratios of IO, LS, and CP for 20-RBWs can be 0.037%, 0.09%, and 0.41%, respectively. Moreover, the acceptable drift ratios of IO, LS, and CP for 40-RBWs can be 0.048%, 0.09%, and 0.53%, respectively. 3) Reinforcing low-strength brick walls with CML/S-CML can improve brick walls' bearing capacity, deformation, and energy dissipation capacity. Using CML/S-CML reinforcement to improve the seismic performance of old masonry houses is a feasible and practical choice.

The effects of alveolar bone loss and miniscrew position on initial tooth displacement during intrusion of the maxillary anterior teeth: Finite element analysis

  • Cho, Sun-Mi;Choi, Sung-Hwan;Sung, Sang-Jin;Yu, Hyung-Seog;Hwang, Chung-Ju
    • The korean journal of orthodontics
    • /
    • v.46 no.5
    • /
    • pp.310-322
    • /
    • 2016
  • Objective: The aim of this study was to determine the optimal loading conditions for pure intrusion of the six maxillary anterior teeth with miniscrews according to alveolar bone loss. Methods: A three-dimensional finite element model was created for a segment of the six anterior teeth, and the positions of the miniscrews and hooks were varied after setting the alveolar bone loss to 0, 2, or 4 mm. Under 100 g of intrusive force, initial displacement of the individual teeth in three directions and the degree of labial tilting were measured. Results: The degree of labial tilting increased with reduced alveolar bone height under the same load. When a miniscrew was inserted between the two central incisors, the amounts of medial-lateral and anterior-posterior displacement of the central incisor were significantly greater than in the other conditions. When the miniscrews were inserted distally to the canines and an intrusion force was applied distal to the lateral incisors, the degree of labial tilting and the amounts of displacement of the six anterior teeth were the lowest, and the maximum von Mises stress was distributed evenly across all the teeth, regardless of the bone loss. Conclusions: Initial tooth displacement similar to pure intrusion of the six maxillary anterior teeth was induced when miniscrews were inserted distal to the maxillary canines and an intrusion force was applied distal to the lateral incisors. In this condition, the maximum von Mises stresses were relatively evenly distributed across all the teeth, regardless of the bone loss.

Theoretical and experimental study on load-carrying capacity of combined members consisted of inner and sleeved tubes

  • Hu, Bo;Gao, Boqing;Zhan, Shulin;Zhang, Cheng
    • Structural Engineering and Mechanics
    • /
    • v.45 no.1
    • /
    • pp.129-144
    • /
    • 2013
  • Load-carrying capacity of combined members consisted of inner and sleeved tubes subjected to axial compression was investigated in this paper. Considering the initial bending of the inner tube and perfect elasto-plasticity material model, structural behavior of the sleeved member was analyzed by theoretic deduction, which could be divided into three states: the elastic inner tube contacts the outer sleeved tube, only the inner tube becomes plastic and both the inner and outer sleeved tubes become plastic. Curves between axial compressive loads and lateral displacements of the middle sections of the inner tubes were obtained. Then four sleeved members were analyzed through FEM, and the numerical results were consistent with the theoretic formulas. Finally, experiments of full-scale sleeved members were performed. The results obtained from the theoretical analysis were verified against experimental results. The compressive load-lateral displacement curves from the theoretical analysis and the tests are similar and well indicate the point when the inner tube contacts the sleeved tube. Load-carrying capacity of the inner tube can be improved due to the sleeved tube. This paper provides theoretical basis for application of the sleeved members in reinforcement engineering.

Effect of T-Plate Anchorage on the Flexural Behavior of Reinforced Concrete Columns Strengthened with Wire Rope Units (와이어로프로 보강된 철근콘크리트 기둥의 휨 거동에 대한 강판 정착의 영향)

  • Sim, Jae-Il;Yang, Keun-Hyeok;Byun, Hang-Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.493-494
    • /
    • 2009
  • Two strengthened columns and an unstrengthened control column were tested to failure under cyclic lateral load combined with a constant axial load to effect of anchorage of T-shaped steel plate in the strengthened column using wire rope units. Main variables considered were anchorage method of T-shaped steel plate. Tested columns were compared with those of conventionally tied columns tested by research of before. Test results showed that lateral load capacity and the displacement ductility ratio of anchorage of T-shaped steel plate in the strengthened column increased 40% and 130% than unstrengthened column, respectively. In particular, at the same effective lateral reinforcement index, a much ductility ratio was observed in the strengthened columns than in the tied columns.

  • PDF