• 제목/요약/키워드: Load-displacement Curve

검색결과 307건 처리시간 0.02초

순차하중을 재하한 3차원 강뼈대 구조물의 극한강도 실험 (Ultimate Strength Testing of 3-D Steel Frame Subjected to Non-Proportional Loads)

  • 김승억;강경원
    • 한국강구조학회 논문집
    • /
    • 제14권1호
    • /
    • pp.59-67
    • /
    • 2002
  • 2층, 1경간 그리고 횡지지되지 않은 3차원 강뼈대 구조물의 극한강도 실험을 수행하였다. 과거의 강뼈대 구조물 실험은 2차원 구조물들의 실험이 대부분이었으므로 이 분야의 지식을 확대하기 위하여 3차원 실험에 대한 연구가 필요하다. 실험체에 수직과 수평 비비례하중을 재하하여 하중-변위곡선을 얻었다. 실험결과들은 3차원 비선형 해석의 검증을 위하여 유용하게 사용될 수 있다. ABAQUS를 이용한 3차원 비선형해석으로 얻은 결과를 실험 데이타와 비교하였다.

Numerical analysis on tensile properties of composite hybrid bonded/bolted joints with flanging

  • Cheng, Xiaoquan;Zhang, Jie;Zhang, Jikui;Liu, Peng;Cheng, Yujia;Xu, Yahong
    • Steel and Composite Structures
    • /
    • 제26권3호
    • /
    • pp.265-272
    • /
    • 2018
  • A detailed study was carried out on the tensile properties of the single-lap joint of a steel panel bolted/bonded to a composite laminate with a flanging. Finite element model (FEM) was established to predict the strength and to analyze the damage propagation of the hybrid joints by ABAQUS/Standard, which especially adopted cohesive elements to simulate the interface between the laminate and adhesive. The strength and failure mode predicted by FEM were in good agreement with the experimental results. In addition, three influence factors including adhesive thickness, bolt preload and bolt-hole clearance were studied. The results show that the three parameters have effect on the first drop load of the load-displacement curve, but the effect of bolt-hole clearance is the largest. The bolt-hole clearance should be avoided for hybrid joints.

Experimental study on mechanical performances of lattice steel reinforced concrete inner frame with irregular section columns

  • Xue, Jianyang;Gao, Liang;Liu, Zuqiang;Zhao, Hongtie;Chen, Zongping
    • Steel and Composite Structures
    • /
    • 제16권3호
    • /
    • pp.253-267
    • /
    • 2014
  • Based on the test on a 1/2.5-scaled model of a two-bay and three-story inner frame composed of reinforced concrete beams and lattice steel reinforced concrete (SRC) irregular section columns under low cyclic reversed loading, the failure process and the features of the frame were observed. The subsequence of plastic hinges of the structure, the load-displacement hysteresis loops and the skeleton curve, load bearing capacity, inter-story drift ratio, ductility, energy dissipation and stiffness degradation were analyzed. The results show that the lattice SRC inner frame is a typical strong column-weak beam structure. The hysteresis loops are spindle-shaped, and the stiffness degradation is insignificant. The elastic-plastic inter-story deformation capacity is high. Compared with the reinforced concrete frame with irregular section columns, the ductility and energy dissipation of the structure are better. The conclusions can be referred to for seismic design of this new kind of structure.

Numerical comparison of bearing capacity of tapered pile groups using 3D FEM

  • Hataf, Nader;Shafaghat, Amin
    • Geomechanics and Engineering
    • /
    • 제9권5호
    • /
    • pp.547-567
    • /
    • 2015
  • This study investigates the behavior of group of tapered and cylindrical piles. The bearing capacities of groups of tapered and cylindrical piles are computed and compared. Modeling of group of piles in this study is conducted in sand using three-dimensional finite element software. For this purpose, total bearing capacity of each group is firstly calculated using the load-displacement curve under specific load and common techniques. Then, the model of group of piles is reloaded under this calculated capacity to find group settlements, stress states on the lateral surfaces of group block, efficiency of group and etc. In order to calculate the efficiency of each group, single tapered and cylindrical piles are modeled separately. Comparison for both tapered and cylindrical group of piles with same volume is conducted and a relation to predict tapered pile group efficiency is developed. A parametric study is also performed by changing parameters such as tapered angle, angle of internal friction of sand, dilatancy angle of soil and coefficient of lateral earth pressure to find their influences on single pile and pile group behavior.

Analytical study of composite beams with different arrangements of channel shear connectors

  • Fanaie, Nader;Esfahani, Farzaneh Ghalamzan;Soroushnia, Soheil
    • Steel and Composite Structures
    • /
    • 제19권2호
    • /
    • pp.485-501
    • /
    • 2015
  • Channels are implemented in composite beams as shear connectors in two arrangements, face to face and back to back. No relevant explanation is found in the design codes to clarify the preference of the mentioned arrangements. Besides, the designers do not have a common opinion on this subject; i.e., some recommend the face to face and others, back to back status. In this research, channel shear connectors in composite beams are studied analytically for both arrangements using ABAQUS software. For this purpose, they have been modeled in simply supported beams in the arrangements of face to face and back to back; their effects on the crack initiation load of concrete slabs were monitored. The stiffness values of composite beams were also compared in the two arrangements using force-displacement curve; the results are relatively the same in both cases. Furthermore, the effects of compressive strength of concrete, channel size, length and spacing of channels as well as steel type of channels on the performance of composite beams have been investigated. According to the results obtained in this research, the face to face status shows better performance in comparison with that of back to back, considering the load of concrete fracturing.

Seismic behavior of Q690 circular HCFTST columns under constant axial loading and reversed cyclic lateral loading

  • Wang, Jiantao;Sun, Qing
    • Steel and Composite Structures
    • /
    • 제32권2호
    • /
    • pp.199-212
    • /
    • 2019
  • This paper presents an investigation on seismic behavior of out-of-code Q690 circular high-strength concrete-filled thin-walled steel tubular (HCFTST) columns made up of high-strength (HS) steel tubes (yield strength $f_y{\geq}690MPa$). Eight Q690 circular HCFTST columns with various diameter-to-thickness (D/t) ratios, concrete cylinder compressive strengths ($f_c$) and axial compression ratios (n) were tested under the constant axial loading and reversed cyclic lateral loading. The obtained lateral load-displacement hysteretic curves, energy dissipation, skeleton curves and ductility, and stiffness degradation were analyzed in detail to reflect the influences of tested parameters. Subsequently, a simplified shear strength model was derived and validated by the test results. Finally, a finite element analysis (FEA) model incorporating a stress triaxiality dependent fracture criterion was established to simulate the seismic behavior. The systematic investigation indicates the following: compared to the D/t ratio and axial compression ratio, improving the concrete compressive strength (e.g., the HS thin-walled steel tube filled with HS concrete) had a slight influence on the ductility but an obvious enhancement of energy dissipation and peak load; the simplified shear strength model based on truss mechanism accurately predicted the shear-resisting capacity; and the established FEA model incorporating steel fracture criterion simulated well the seismic behavior (e.g., hysteretic curve, local buckling and fracture), which can be applied to the seismic analysis and design of Q690 circular HCFTST columns.

Research on static and dynamic behaviors of PC track beam for straddle monorail transit system

  • Yang, Yongqing;Yang, Deng;Gou, Hongye;Bao, Yi
    • Steel and Composite Structures
    • /
    • 제31권5호
    • /
    • pp.437-452
    • /
    • 2019
  • In this study, in-situ static and dynamic tests of four pre-stressed concrete (PC) track beams with different span lengths and curvatures in a straddle monorail transit system were reported. In the static load tests, the strain and deflection at critical sections of the PC track beams were measured to determine the load bearing capacity and stiffness. The dynamic responses of strain, deflection, acceleration, and displacement at key positions of the PC track beams were measured under different train speeds and train loads to systematically study the dynamic behaviors of the PC track beams. A three-dimensional finite element model of the track beam-vehicle coupled vibration system was established to help understand the dynamic behavior of the system, and the model was verified using the test results. The research results show that the curvature, span length, train speed, and train loads have significant influence on the dynamic responses of the PC track beams. The dynamic performance of the PC track beams in the curve section is susceptible to dynamic loads. Appropriate train loads can effectively reduce the impact of the train on the PC track beam. The PC track beams allow good riding comfort.

Ag 필름/ Cu기판의 나노인덴테이션 거동 해석 (Nanoindentation behaviours of silver film/copper substrate)

  • 트란딘롱;김엄기;전성식
    • Composites Research
    • /
    • 제22권3호
    • /
    • pp.9-17
    • /
    • 2009
  • 본 논문에서는 분자동력학 방법을 이용하여 Ag 필름/Cu기판에 대한 나노인덴테이션 특성을 파악하였다. 필름의 강성과 경도는 필름의 두께에 관계되어있으며, 임계범위 내에서, 그래인 크기가 증기하면 강성과 경도도 증가하는 것을 확인하였다. 5nm 두께 이하의 Ag필름/Cu기판의 강성과 경도는 벌크 Ag의 경우에 비해 낮은 값을 나타내었다. 특히 4nm 두께 이하의 Ag필름/Cu기판의 인덴테이션에 있어서, 전위 집적과 불일치 전위사이의 상호작용에 의해 계면상에서 꽃모양의 전위 루프가 발생 하였다. 이는 인덴테이션 하중과 변위 커브에서 하중이 저하되는 것과 관계있는 것으로 사료되고 있다.

Fire Behavior of Reinforced Concrete Filled Square Steel Tube Columns Under Constant Axial Loads

  • Jeeyoung Lee;Seulgi Han;Jinwon Shin;Inrak Choi;Sungmo Choi
    • 국제초고층학회논문집
    • /
    • 제13권1호
    • /
    • pp.85-95
    • /
    • 2024
  • A composite member made of concrete-filled steel tubes (CFT columns) has been recognized for its fire resistance due to the thermal mass effect of concrete inside the steel tube, as shown in various studies. In this study, the fire resistance performance of reinforced CFT columns under constant axial load was evaluated using finite element analysis with ABAQUS. For this purpose, the variables including cross-section size, steel tube thickness, and concrete cover thickness were set, and the temperature distribution in the column cross-section exposed to a standard fire was investigated using heat transfer analysis. Ultimately, a P-M interaction curve was obtained by evaluating the overall residual strength of columns, and the fire resistance time was determined by evaluating axial displacement-time responses due to the reduction in load capacity during fire through stress analysis.

유한요소법을 이용한 우레탄 휠의 구조 안전성에 관한 연구 (A Study on Structural Safety of a Urethane Wheel Using FEM)

  • 송하종;정일호;이수호;박태원;박중경;이형;조동협;김혁;이경목
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.1042-1047
    • /
    • 2004
  • Urethane is a high polymeric and elastic material useful in designing mechanic parts that cannot be molded in rubber or plastic material. Especially, urethane is high in mechanical strength and anti-abrasive. Hereby, an urethane coated aluminum wheel is used for supporting of OHT vehicle moving back and forth to transport products. For the sake of verifying the safety of the vehicle, structural safety for applied maximum dynamic load on a urethane wheel needs to be carefully examined while driving. Therefore, we have performed the dynamic simulation on the OHT vehicle model. Although the area definition of applied load can be obtained from the previous study of Hertzian and Non-Hertzian contact force model when having exact properties of contact material, static analysis is simulated, since the proper material properties of urethane have not been guaranteed, after we have performed the actual contact area test for each load. In case of this study, the method of distributing load for each node is included. Finally, in comparison with result of analysis and load-displacement curve obtained from the compression test, we have defined the material properties of urethane. In the analysis, we have verified the safety of the wheel. After all, we have performed a mode analysis using the obtained material properties. With the result, we have the reliable finite element model.

  • PDF