• 제목/요약/키워드: Load-deformation response

검색결과 274건 처리시간 0.026초

Shear deformation model for reinforced concrete columns

  • Sezen, Halil
    • Structural Engineering and Mechanics
    • /
    • 제28권1호
    • /
    • pp.39-52
    • /
    • 2008
  • Column shear failures observed during recent earthquakes and experimental data indicate that shear deformations are typically associated with the amount of transverse reinforcement, column aspect ratio, axial load, and a few other parameters. It was shown that in some columns shear displacements can be significantly large, especially after flexural yielding. In this paper, a piecewise linear model is developed to predict an envelope of the cyclic shear response including the shear displacement and corresponding strength predictions at the first shear cracking, peak strength, onset of lateral strength degradation, and loss of axial-load-carrying capacity. Part of the proposed model is developed using the analysis results from the Modified Compression Field Theory (MCFT). The results from the proposed model, which uses simplified equations, are compared with the column test data.

Three dimensional dynamic response of functionally graded nanoplates under a moving load

  • Hosseini-Hashemi, Shahrokh;Khaniki, Hossein Bakhshi
    • Structural Engineering and Mechanics
    • /
    • 제66권2호
    • /
    • pp.249-262
    • /
    • 2018
  • In this paper, reaction of functionally graded (FG) thick nanoplates resting on a viscoelastic foundation to a moving nanoparticle/load is investigated. Nanoplate is assumed to be thick by using second order shear deformation theory and small-scale effects are taken into account in the framework of Eringen's nonlocal theory. Material properties are varied through the thickness using FG models by having power-law, sigmoid and exponential functions for material changes. FG nanoplate is assumed to be on a viscoelastic medium which is modeled using Kelvin-Voight viscoelastic model. Galerkin, state space and fourth-order Runge-Kutta methods are employed to solve the governing equations. A comprehensive parametric study is presetned to show the influence of different parameters on mechanical behavior of the system. It is shown that material variation in conjunction with nonlocal term have a significant effect on the dynamic deformation of nanoplate which could be used in comprehending and designing more efficient nanostructures. Moreover, it is shown that having a viscoelastic medium could play an important role in decreasing these dynamic deformations. With respect to the fresh studies on moving atoms, molecules, cells, nanocars, nanotrims and point loads on different nanosctructures using scanning tunneling microscopes (STM) and atomic force microscopes (AFM), this study could be a step forward in understanding, predicting and controlling such kind of behaviors by showing the influence of the moving path, velocity etc. on dynamic reaction of the plate.

Seismic response of geosynthetic reinforced retaining walls

  • Jesmani, Mehrab;Kamalzare, Mehrad;Sarbandi, Babak Bahrami
    • Geomechanics and Engineering
    • /
    • 제10권5호
    • /
    • pp.635-655
    • /
    • 2016
  • The effects of reinforcement on the horizontal and vertical deformations of geosynthetic reinforced retaining walls are investigated under a well-known seismic load (San Jose earthquake, 1955). Retaining walls are designed with internal and external stability (with appropriate factor of safety) and deformation is chosen as the main parameter for describing the wall behavior under seismic load. Retaining walls with various heights (6, 8, 10, 12 and 14 meter) are optimized for geosynthetics arrangement, and modeled with a finite element method. The stress-strain behavior of the walls under a well-known loading type, which has been used by many previous researchers, is investigated. A comparison is made between the reinforced and non-reinforced systems to evaluate the effect of reinforcement on decreasing the deformation of the retaining walls. The results show that the reinforcement system significantly controls the deformation of the top and middle of the retaining walls, which are the critical points under dynamic loading. It is shown that the optimized reinforcement system in retaining walls under the studied seismic loading could decrease horizontal and vertical deformation up to 90% and 40% respectively.

Analytical investigation of thin steel plate shear walls with screwed infill plate

  • Vatansever, Cuneyt;Berman, Jeffrey W.
    • Steel and Composite Structures
    • /
    • 제19권5호
    • /
    • pp.1145-1165
    • /
    • 2015
  • A behavior model for screw connections is developed to provide a better representation of the nonlinear response of thin steel plate shear walls (TSPSWs) with infill plates attached to the boundary frame members via self-drilling screws. This analytical representation is based on the load-bearing deformation relationship between the infill plate and the screw threads. The model can be easily implemented in strip models of TSPSWs where the tension field action of the infill plates is represented by a series of parallel discrete tension-only strips. Previously reported experimental results from tests of two different TSPSWs are used to provide experimental validation of the modeling approach. The beam-to-column connection behavior was also included in the analyses using a four parameter rotational spring model that was calibrated to a test of an identical frame as used for the TSPSW specimens but without the infill plates. The complete TSPSW models consisting of strips representing the infill plates, zero length elements representing the load-bearing deformation response of the screw connection at each end of the strips and the four parameter spring model at each beam-to-column connection are shown to have good agreement with the experimental results. The resulting models should enable design and analysis of TSPSWs for both new construction and retrofit of existing buildings.

등가하중을 이용한 원자로 핵연료봉 지지격자 스프링의 비선형 응답 구조 최적설계 (Nonlinear Response Structural Optimization of a Nuclear Fuel Rod Spacer Grid Spring Using the Equivalent Load)

  • 김도원;이현아;송기남;김용일;박경진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.694-699
    • /
    • 2007
  • The spacer grid set is a part of a nuclear fuel assembly. The set has a spring and the spring supports the fuel rods safely. Although material nonlinearity is involved in the deformation of the spring,nonlinearity has not been considered in design of the spring. Recently a nonlinear response structural optimization method has been developed using equivalent loads. It is called nonlinear response optimization equivalent loads (NROEL). In NROEL, the external loads are teansformed to the equivalent loads (EL) for linear static analysis and linear response optimization is carried out based on the EL in a cyclic manner until the convergence criteria are satisfied. EL is the load set which generates the same response no EL. The objective function is defined by minimizing the maximum stress in the spring while is limited and the support force of the spring is larger than a certain value. The results are verified by nonlinear. ABAQUS is used for nonlinear response analysis and GENESIS is employed for linear response optimization.

  • PDF

Seismic deformation behaviors of the soft clay after freezing-thawing

  • Zhen-Dong Cui;Meng-Hui Huang;Chen-Yu Hou;Li Yuan
    • Geomechanics and Engineering
    • /
    • 제34권3호
    • /
    • pp.303-316
    • /
    • 2023
  • With the development and utilization of urban underground space, the artificial ground freezing technology has been widely used in the construction of underground engineering in soft soil areas. The mechanical properties of soft clay changed greatly after freezing and thawing, which affected the seismic performance of underground structures. In this paper, a series of triaxial tests were carried out to study the dynamic response of the freezing-thawing clay under the seismic load considering different dynamic stress amplitudes and different confining pressures. The reduction factor of dynamic shear stress was determined to correct the amplitude of the seismic load. The deformation development mode, the stress-strain relationship and the energy dissipation behavior of the soft clay under the seismic load were analyzed. An empirical model for predicting accumulative plastic strain was proposed and validated considering the loading times, the confining pressures and the dynamic stress amplitudes. The relevant research results can provide a theoretical reference to the seismic design of underground structures in soft clay areas.

Vector mechanics-based simulation of large deformation behavior in RC shear walls using planar four-node elements

  • Zhang, Hongmei;Shan, Yufei;Duan, Yuanfeng;Yun, Chung Bang;Liu, Song
    • Structural Engineering and Mechanics
    • /
    • 제74권1호
    • /
    • pp.1-18
    • /
    • 2020
  • For the large deformation of shear walls under vertical and horizontal loads, there are difficulties in obtaining accurate simulation results using the response analysis method, even with fine mesh elements. Furthermore, concrete material nonlinearity, stiffness degradation, concrete cracking and crushing, and steel bar damage may occur during the large deformation of reinforced concrete (RC) shear walls. Matrix operations that are involved in nonlinear analysis using the traditional finite-element method (FEM) may also result in flaws, and may thus lead to serious errors. To solve these problems, a planar four-node element was developed based on vector mechanics. Owing to particle-based formulation along the path element, the method does not require repeated constructions of a global stiffness matrix for the nonlinear behavior of the structure. The nonlinear concrete constitutive model and bilinear steel material model are integrated with the developed element, to ensure that large deformation and damage behavior can be addressed. For verification, simulation analyses were performed to obtain experimental results on an RC shear wall subjected to a monotonically increasing lateral load with a constant vertical load. To appropriately evaluate the parameters, investigations were conducted on the loading speed, meshing dimension, and the damping factor, because vector mechanics is based on the equation of motion. The static problem was then verified to obtain a stable solution by employing a balanced equation of motion. Using the parameters obtained, the simulated pushover response, including the bearing capacity, deformation ability, curvature development, and energy dissipation, were found to be in accordance with the experimental observation. This study demonstrated the potential of the developed planar element for simulating the entire process of large deformation and damage behavior in RC shear walls.

동하중을 받는 복합재료 원통셸의 동적거동 해석 (On the Dynamic Response of Laminated Circular Cylindrical Shells under Dynamic Loads)

  • 이영신;이기두
    • 대한기계학회논문집
    • /
    • 제17권11호
    • /
    • pp.2684-2693
    • /
    • 1993
  • The free vibration and dynamic response of cross-ply for CFRP and GFRP laminated circular cylindrical shells under dynamic loadings are investigated by using the first-order shear deformation shell theory. The modal analysis technique is used to develop the analytical solutions of simply supported cylindrical shells under dynamic load. The analysis is based on an expansion of the loads, displacements and rotations in a double Fourier series which satisfies the and boundary conditions of simply support. Analytical solution is assumed to be separable into a function of time and a function of position. In this paper, the considered load forces are step pulse, sine pulse, triangular(1, 2, 3) pulse and exponential pulse. The solution for a given loading pulse can be found by involving the convolution integral. The results show that the dynamic response are governed primarily by the natural period of the structure.

An accurate analytical exploration for dynamic response of thermo-electric CNTRC beams under driving harmonic and constant loads resting on Pasternak foundation

  • Mohammadreza Eghbali;Seyed Amirhosein Hosseini
    • Advances in nano research
    • /
    • 제16권6호
    • /
    • pp.549-564
    • /
    • 2024
  • This paper aims to analyze the dynamic response of thermoelectric carbon nanotube-reinforced composite (CNTRC) beams under moving harmonic load resting on Pasternak elastic foundation. The governing equations of thermoelectric CNTRC beam are obtained based on the Karama shear deformation beam theory. The beams are resting on the Pasternak foundation. Previous articles have not performed the moving load mode with the analytical method. The exact solution for the transverse and axial dynamic response is presented using the Laplace transform. A comparison of previous studies has been published, where a good agreement is observed. Finally, some examples were used to analyze, such as excitation frequency, voltage, temperature, spring constant factors, the volume fraction of Carbon nanotubes (CNTs), the velocity of a moving harmonic load, and their influence on axial and transverse dynamic and maximum deflections. The advantages of the proposed method compared to other numerical methods are zero reduction of the error percentage that exists in numerical methods.

등가하중을 이용한 비선형 정적 응답 위상최적설계의 기초연구 (Preliminary Study on Nonlinear Static Response Topology Optimization Using Equivalent Load)

  • 이현아;;박경진
    • 대한기계학회논문집A
    • /
    • 제34권12호
    • /
    • pp.1811-1820
    • /
    • 2010
  • 실제 대부분의 공학 문제들은 크고 작은 비선형성을 내포한다. 구조물의 최적설계 과정에서는 다수의 구조물 사이에 발생하는 접촉이나 비선형 물성치를 가지는 재료, 또는 대변형을 고려해야만 한다. 그러나 민감도 계산이 고가이기 때문에 비선형성을 최적화에 고려하는 것은 매우 어렵다. 따라서 비선형 정적 반응 위상최적설계를 위하여 등가하중법을 사용한다. 등가하중이란 비선형 해석에서 유발되는 반응장과 동일한 반응장을 유발하는 선형 정적하중이다. 등가하중법은 치수/형상최적설계를 위하여 연구되어 왔다. 위상최적설계는 치수/형상최적설계에 비하여 설계변수가 많기 때문에 기존의 등가하중법을 그대로 적용할 수 없기 때문에 위상최적설계를 위하여 등가하중법을 확장하고 수정한다. 간단한 예제를 통하여 등가하중법을 이용한 위상최적설계 결과가 수치적으로 도출한 결과와 유사함을 보이고 실제 공학 예제의 위상최적설계를 통하여 기존의 선형 정적 위상최적설계와 결과를 비교한다.