• 제목/요약/키워드: Load-bearing wall

검색결과 130건 처리시간 0.043초

내력벽으로 구성된 구조물의 발파해체를 위한 사전취약화 해석 (Pre-weakening Analysis for the Explosive Demolition on the Structural System Consisted of Load Bearing Wall)

  • 최훈;홍순중;문병화;김효진;윤순종
    • 화약ㆍ발파
    • /
    • 제28권2호
    • /
    • pp.76-85
    • /
    • 2010
  • 사전취약화는 발파해체공법의 한 과정으로 구조물의 일부를 해체해 구조물의 붕괴방향 유도 혹은 해체장비의 이동경로확보 등을 목적으로 실시한다. 하지만, 현재 국내에는 사전취약화와 관련된 전문시방서 등의 기준이 정비되어 있지 않은 상태이다. 또한, 구조물의 설계도서가 없는 경우가 많고 무분별한 개보수 및 구조변경등으로 현재 구조물의 상황과 도면이 불일치하는 경우 등 여러 제약요인들로 인해 사전취약화가 정확한 구조해석에 근거하기 보다는 경험에 의해 진행되는 경우가 많다. 이 연구는 내력벽의 사전취약화와 관련된 것으로 내력벽식 구조물의 발파해체를 위한 시공계획의 일부를 소개하고 유한요소해석법을 이용하여 국내에 건설되고 있는 한 아파트 구조물을 대상으로 내력벽의 사전취약화 가능범위를 조사하였으며, 사전취약화 계획시 중요 고려사항에 대해 언급하였다.

Structural performance of reinforced concrete wall with boundary columns under shear load

  • Chu, Liusheng;He, Yuexi;Li, Danda;Ma, Xing;Cheng, Zhanqi
    • Structural Engineering and Mechanics
    • /
    • 제76권4호
    • /
    • pp.479-489
    • /
    • 2020
  • This paper proposed a novel form of reinforced concrete (RC) shear wall confined with boundary columns. The structural effect of applying steel fiber reinforced concrete (SFRC) in the wall-column systems was studied. Three full-scale wall samples were constructed including two RC wall-RC column samples with different stirrup ratios and one RC wall-SFRC column sample. Low frequency cyclic testing was carried out to investigate the failure modes, hysteretic behavior, load-bearing capacity, ductility, stiffness degradation and energy dissipation. ABAQUS models were set up to simulate the structural behavior of tested samples, and good agreement was achieved between numerical simulation and experimental results. A further supplementary parametric study was conducted based on ABAQUS models. Both experimental and numerical results showed that increasing stirrup ratio in boundary columns did not affect much on load bearing capacity or stiffness degradation of the system. However, applying SFRC in boundary columns showed significant enhancement on load bearing capacity. Numerical simulation also shows that the structural performances of RC wall-SFRC column system were comparable to a wall-column system fully with SFRC.

과재하중 재하에 따른 역 T형 옹벽의 활동거동에 관한 수치해석 (A Numerical Study of Cantilever Retaining Wall Sliding Behavior due to Surcharge Loading Condition)

  • 유남재;이명욱;박병수;이승주
    • 산업기술연구
    • /
    • 제21권B호
    • /
    • pp.205-212
    • /
    • 2001
  • This paper is experimental and numerical research about the sliding behavior of cantilever retaining walls resisting surcharge loads. In experimental research, centrifuge model tests at the lg and 40 g-level were performed by changing the location of model footing and its width. Bearing capacity of model footing and characteristics of load-settlement and load-lateral displacement of retaining wall were investigated. Test results of bearing capacity were compared with modified jarquio method, based on the limit equilibrium method with elasticity theory. For the numerical analysis, the commericially available program of FLAC was used by implementing the hyperbolic constitutive relationships to compare with test result about load-settlement and load-displacement of retaining wall, bearing capacity of strip footing.

  • PDF

건축용 비내력 경량벽체의 정적 수평하중저항성 시험방법의 표준화 (Standardization of Stiffness Test Method of Non-bearing Lightweight Wall for building)

  • 김진식;최수경
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2015년도 춘계 학술논문 발표대회
    • /
    • pp.185-186
    • /
    • 2015
  • The use of non-bearing lightweight wall has increased recently due to the increase of high-rise buildings and supply of long-life housing. Lightweight wall has advantages such as reducing the self-weight of the building, convenience in installation, and shortening construction period, however, must have a sufficient strength to external force. This study standardized the stiffness (static horizontal load resistance) test method for lightweight walls by using the actual impact load obtained through the load analysis test conducted in the previous studies. The size of specimen was set up as height 2.4m and width 3.0m. Test apparatus and test methods were referred to BS 5234-2:1992. However, the loading level applied to the specimen was divided into 3 steps (3000N, 1000N, 500N) that can be applied selectively depending on the purpose of the wall. The deformation characteristics according to the same loading level were vary depending on the specimen's type, and the evaluation criteria for functional damage may vary depending on the material, method of construction, and purpose of wall. Therefore, we did not suggest unified evaluation criteria of the stiffness to the test results.

  • PDF

ALC 블록 벽체의 세면기 부착에 따른 편심하중 저항성 평가 (Eccentric Load Resistance of Washbasin Attached to ALC Block Wall)

  • 박준형;이덕주;김현;최수경
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2019년도 춘계 학술논문 발표대회
    • /
    • pp.12-13
    • /
    • 2019
  • The bearing capacity of the wall against the eccentric load when the washbasin was attached on the ALC block wall was tested. Test methods are BS EN 14688 and BS 5234-2. Tests in accordance with BS EN 14688 showed that the holding capacity of steel was much stronger and more stable when HA-II (chemical anchor) was used than when the washbasin was fixed using HA-I (plastic anchor). As an experimental result according to the Annex K of BS 5234-2, the bearing capacity of ALC block wall corresponded to the "stage in which the force works(performance grade) 1,500N" for all of the cases where a washbasin is fixed using two types of the wall's dedicated anchors(HA-I and HA-II).

  • PDF

각형강관을 이용한 스터드-런너 골조형 벽체시스템의 구조내력 성능평가 (Structural Load Bearing Capacity of Wall System Framed by Studs and Runners using Square Steel Tubes)

  • 김호수;홍석일;임영도
    • 한국강구조학회 논문집
    • /
    • 제17권3호통권76호
    • /
    • pp.253-262
    • /
    • 2005
  • 본 논문에서 제시된 스터드-런너 골조형 벽체시스템은 일반구조용 각형강관(열간성형강)을 구조부재로 사용하여 벽체를 구성하고, 수평부재인 런너에 의해 보강되어 있기 때문에 스틸하우스와 비교하여 단위벽체의 내력성능 증가 및 좌굴에 대한 효율적 거동을 기대할 수 있으며, 또한 경량기포콘크리트를 충전함으로써 차음성능 및 단열의 효과를 기대할 수 있다. 이와 같은 시스템을 중 저층(3~5층)규모의 공동주택 및 사무실건물에까지 적용하기 위해, 런너의 설치간격과 경량기포콘크리트의 타설효과를 변수로 하여 실제규모의 단위벽체를 시험체로 제작하여 연직하중 및 수평하중에 대한 내력성능평가가 필요하다. 따라서, 본 논문에서는 경량기포콘크리트의 타설효과를 고려하여 연직하중에 대한 축내력성능평가와 수평하중에 대한 전단내력성능평가를 통해 스터드-런너 골조형 벽체시스템의 구조적성능을 분석하고자 한다.

Seismic behavior of double steel plates and concrete filled composite shear walls subject to in-plane cyclic load: Experimental investigation

  • Xiaohu Li;Hao Luo;Xihao Ren;Tao Zhang;Lei Li;Ke Shi
    • Structural Engineering and Mechanics
    • /
    • 제90권4호
    • /
    • pp.345-356
    • /
    • 2024
  • This paper aims to investigate the seismic behavior of double steel plate and concrete composite shear wall (DSCW) of shield buildings in nuclear power engineering through experimental study. Hence, a total of 10 specimens were tested to investigate the hysteretic performance of DSCW specimens in detail, in terms of load vs. displacement hysteretic curves, skeleton curves, failure modes, flexural strength, energy dissipation capacity. The experimental results indicated that the thickness of steel plate, vertical load and stiffener have great influence on the shear bearing capacity of shear wall, and the stud space has limited influence on the shear capacity. And finally, a novel simplified formula was proposed to predict the shear bearing capacity of composite shear wall. The predicted results showed satisfactory agreement with the experimental results.

건축용 비내력 경량벽체의 내충격성 시험방법의 표준화 (Standardization of Impact Test Methods of Non-bearing Lightweight Wall for Building)

  • 김기준;최수경
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2015년도 춘계 학술논문 발표대회
    • /
    • pp.181-182
    • /
    • 2015
  • The use of non-bearing light weight wall has increased recently due to the increase of high-rise buildings and supply of long-life housing. Light weight wall has advantages such as reducing the self-weight of the building, convenience in installation, and shortening construction period, however, must have a sufficient strength to external force. This study standardized the impact resistance test method for light weight walls by using the actual impact load obtained through load analysis test in previous studies. The impact resistance test method was divided into the test method that uses soft body and the one that uses hard body. The size of specimen was set up as height 2.4m and width 3.0m. The size and shape of the body followed those used in BS 5234-2 and so on for the compatibility with the test method used overseas. The judgment criteria for impact resistance based on test results were not defined uniformly as the assessment of functional damage can vary depending on the type of material, structural method, purpose of wall, and so on even when the same impact load was applied.

  • PDF

Experimental and AI based FEM simulations for composite material in tested specimens of steel tube

  • Yahui Meng;Huakun Wu;ZY Chen;Timothy Chen
    • Steel and Composite Structures
    • /
    • 제52권4호
    • /
    • pp.475-485
    • /
    • 2024
  • The mechanical behavior of the steel tube encased high-strength concrete (STHC) composite walls under constant axial load and cyclically increasing lateral load was studied. Conclusions are drawn based on experimental observations, grey evolutionary algorithm and finite element (FE) simulations. The use of steel tube wall panels improved the load capacity and ductility of the specimens. STHC composite walls withstand more load cycles and show more stable hysteresis performance than conventional high strength concrete (HSC) walls. After the maximum load, the bearing capacity of the STHC composite wall was gradually reduced, and the wall did not collapse under the influence of the steel pipe. For analysis of the bending capacity of STHC composite walls based on artificial intelligence tools, an analysis model is proposed that takes into account the limiting effect of steel pipes. The results of this model agree well with the test results, indicating that the model can be used to predict the bearing capacity of STHC composite walls. Based on a reasonable material constitutive model and the limiting effect of steel pipes, a finite element model of the STHC composite wall was created. The finite elements agree well with the experimental results in terms of hysteresis curve, load-deformation curve and peak load.

두께가 다른 이종배관 용접부 면삭 각도 변화에 따른 하중지지능력 평가 (Load Bearing Capacity of Welded Joints between Dissimilar Pipelines with Unequal Wall Thickness)

  • 백종현;김영표;김우식
    • 대한기계학회논문집A
    • /
    • 제36권9호
    • /
    • pp.961-970
    • /
    • 2012
  • 두께가 다른 이종강도 배관 용접부에서 인장, 내압 및 굽힘응력에 대한 하중지지능력을 평가하였다. 1.22, 1.54 및 1.89의 두께비를 갖는 API X65-API X80, API X42-API X65 및 API X42-API X80 배관 용접부를 유한요소해석을 통하여 하중지지능력을 평가하였다. 이종강도 배관의 두께비가 1.5 이하에서 인장강도와 최대모멘트는 면삭각도 변화에 큰 영향을 받지 않으나 두께비가 1.5 이상에서는 큰 영향을 받는다. 저강도 배관의 길이방향 면삭각도와 두께비 변화에 따라서는 내압에 의한 파열압력은 영향을 받지 않는다.