• Title/Summary/Keyword: Load-Settlement

Search Result 586, Processing Time 0.027 seconds

암반에 근입된 SIP 말뚝의 지지력 특성에 관한 연구 (A Study on the Characteristics of Bearing Capacity for SIP Piles constructed on Rock Mass)

  • 김태훈;박준홍;이송
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2002년도 춘계학술대회 논문집
    • /
    • pp.295-300
    • /
    • 2002
  • In this research problems of recent design methods and their improvement for SIP in domestic areas were studied by using the characteristics of load-settlement curves and bearing capacity from field loading tests. Elastic and plastic settlement for total settlement in each loading step conducted domestic areas had a tendency. From these tendency and bearing capacity determined by loading tests we can ascertain that empirical chart can be assistant tool in SIP design. It showes that SIP design using N-value in domestic area with soil condition of grarute type results in very conservative bearing capacity, to be opposed in soil with unprofitable geological condition the design can be insecure. Also, we can ascertain that Meyerhof's bearing capacity used modified N-value on tip part of pile is more applicable than recent design method where tip bearing capacity is 20NAp N-value limited to 50. These results show that modified design method can he more economic than before because of using pile's bearing capacity to tolerable load of pile material.

  • PDF

Effects of rock-support and inclined-layer conditions on load carrying behavior of piled rafts

  • Roh, Yanghoon;Kim, Garam;Kim, Incheol;Lee, Junhwan
    • Geomechanics and Engineering
    • /
    • 제18권4호
    • /
    • pp.363-371
    • /
    • 2019
  • In this study, the load carrying behavior of piled rafts installed in inclined bearing rock layer was investigated for rock-mounted and -socketed conditions. It was found that settlements induced for an inclined bearing rock layer are larger than for a horizontal layer condition. The load capacity of piled rafts for the rock-mounted condition decreased as rock-layer inclination angle (${\theta}$) increased, while vice versa for the rock-socketed condition. The load capacities of raft and piles both decreased with increasing ${\theta}$ for the rock-mounted condition. When bearing rock layer was inclined, loads carried by uphill-side piles were greater than those by downhill-side piles. The values of differential settlements of rock-mounted and -socketed conditions were not significantly different whereas slightly higher for the rock-socketed condition. The values of load sharing ratio (${\alpha}_p$) and its variation with settlement were not markedly changed by the inclination of bedrock. It was shown that ${\alpha}_p$ for piled rafts installed in rock layer was not affected by ${\theta}$ whereas actual loads carried by raft and piles may vary depending on the pile installation and rock-layer inclination conditions.

Impact of adjacent excavation on the response of cantilever sheet pile walls embedded in cohesionless soil

  • Singh, Akshay Pratap;Chatterjee, Kaustav
    • Geomechanics and Engineering
    • /
    • 제30권3호
    • /
    • pp.293-312
    • /
    • 2022
  • Cantilever sheet pile walls having section thinner than masonry walls are generally adopted to retain moderate height of excavation. In practice, a surcharge in the form of strip load of finite width is generally present on the backfill. So, in the present study, influence of strip load on cantilever sheet pile walls is analyzed by varying the width of the strip load and distance from the cantilever sheet pile walls using finite difference based computer program in cohesionless soil modelled as Mohr-Coulomb model. The results of bending moment, earth pressure, deflection and settlement are presented in non-dimensional terms. A parametric study has been conducted for different friction angle of soil, embedded depth of sheet pile walls, different magnitudes and width of the strip load acting on the ground surface and at a depth below ground level. The result of present study is also validated with the available literature. From the results presented in this study, it can be inferred that optimum behavior of cantilever sheet pile walls is observed for strip load having width 2 m to 3 m on the ground surface. Further as the depth of strip load below the ground surface increases below the ground level to 0.75 times excavation height, the bending moment, settlement, net earth pressure and deflection decreases and then remains constant.

교량상 slab궤도의 상향력 민감도분석 (Parameteric Analysis for Up-lifting force on Slab track of Bridge)

  • 최성기;박대근;한상윤;강영종
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2007년도 추계학술대회 논문집
    • /
    • pp.1188-1195
    • /
    • 2007
  • The vertical forces in rail fasteners at areas of bridge transitions near the embankment and on the pier will occur due to different deformations of adjoining bridges caused by the trainloads, the settlement of supports, and the temperature gradients. The up-lifting forces is not large problem in the blast track because the elasticity of blast and rail pad buffs up-lifting effect. But, it is likely to be difficult to ensure the serviceability of the railway and the safety of the fastener in the end in that concrete slab track consist of rail, fastener, and track in a single body, delivering directly the up-lifting force to the fastener if the deck is bended because of various load cases, such as the end rotation of the overhang due to the vertical load, the bending of pier due to acceleration/braking force and temperature deviation, the settlement of embankment and pier, the temperature deviation of up-down deck and front-back pier, and the rail deformation due to wheel loads. The analysis of the rail fastener is made to verify the superposed tension forces in the rail fastener due to various load cases, temperature gradients and settlement of supports. The potential critical fasteners with the highest uplift forces are the fastener adjacent to the civil joint. The main influence factors are the geometry of the bridge such as, the beneath length of overhang, relative position of bridge bearing and fastener, deflection of bridge and the vertical spring stiffness of the fastener.

  • PDF

Comparative study on the behavior of lime-soil columns and other types of stone columns

  • Malekpoor, Mohammadreza;Poorebrahim, Gholamreza
    • Geomechanics and Engineering
    • /
    • 제7권2호
    • /
    • pp.133-148
    • /
    • 2014
  • An experimental study is carried out to evaluate the performance of Lime mortar-Well graded Soil (Lime-WS) columns for the improvement of soft soils. Tests are conducted on a column of 100 mm diameter and 600 mm length surrounded by soft soil in different area ratios. Experiments are performed either with the entire area loading to evaluate the load - settlement behavior of treated grounds and only a column area loading to find the limiting axial stress of the column. A series of tests are carried out in soaking condition to investigate the influence of moisture content on the load - settlement behavior of specimens. In order to compare the behavior of Lime-WS columns with Conventional Stone (CS) columns as well as Geogrid Encased Stone (GES) columns, the behavior of these columns have been also considered in the present study. Remarkable improvement in the behavior of soft soil is observed due to the installation of Lime-WS columns and the performance of these columns is significantly enhanced by increasing the area ratio. The results show that CS columns are not suitable as a soil improvement technique for extremely soft soils and should be enhanced by encasing the column or replaced by rigid stone columns.

성토지지말뚝공법 중 섬유보강재의 인장력 검토에 관한 연구 (A Study on the tension of Geogid on Pile-supported Construction Method)

  • 문인호;박종관;이일화
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2008년도 추계학술대회 논문집
    • /
    • pp.905-917
    • /
    • 2008
  • Road or Railway construction over soft ground is needed to be considered on secondary consolidation which will be caused differential settlement, lack of transport serviceability, higher maintenance cost. Especially for the railway construction in the second phase of Gyung-Bu or Ho-Nam high speed railway, concrete slab track has been adapted as a safe and cost effective geotechnical solution. In this case controlling the total settlement under the tolerance is essential. And pile supported geogrid reinforced construction method is suggested as a solution for the problem of the traditional method on soft soil treatments. Pile supported geogrid reinforced construction method consists of piles that are designed to transfer the load of the embankment through the compressible soil layer to a firm foundation. The load from the embankment must be effectively transferred to the piles to prevent punching of the piles through the embankment fill creating differential settlement at the surface of the embankment. The arrangement of the piles can create soil arching to carry the load of embankment to the piles. In order to minimize the number of piles geogrid reinforced pile supported construction method is being used on a regular basis. This method consists of one or more layers of geogrid reinforcement placed between the top of the piles and the bottom of the embankment. This paper presents several methods of pile supported geogrid reinforced construction and calculation results from the several methods and comparison of them.

  • PDF

Model tests on bearing capacity and accumulated settlement of a single pile in simulated soft rock under axial cyclic loading

  • Zhang, Benjiao;Mei, Can;Huang, Bin;Fu, Xudong;Luo, Gang;Lv, Bu
    • Geomechanics and Engineering
    • /
    • 제12권4호
    • /
    • pp.611-626
    • /
    • 2017
  • The research reported herein is concerned with the model testing of piles socketed in soft rock which was simulated by cement, plaster, sand, water and concrete hardening accelerator. Model tests on a single pile socketed in simulated soft rock under axial cyclic loading were conducted and the bearing capacity and accumulated deformation characteristics under different static, and cyclic loads were studied by using a device which combined oneself-designed test apparatus with a dynamic triaxial system. The accumulated deformation of the pile head, and the axial force, were measured by LVDT and strain gauges, respectively. Test results show that the static load ratio (SLR), cyclic load ratio (CLR), and the number of cycles affect the accumulated deformation, cyclic secant modulus of pile head, and ultimate bearing capacity. The accumulated deformation increases with increasing numbers of cycles, however, its rate of growth decreases and is asymptotic to zero. The cyclic secant modulus of pile head increases and then decreases with the growth in the number of cycles, and finally remains stable after 50 cycles. The ultimate bearing capacity of the pile is increased by about 30% because of the cyclic loading thereon, and the axial force is changed due to the applied cyclic shear stress. According to the test results, the development of accumulated settlement is analysed. Finally, an empirical formula for accumulated settlement, considering the effects of the number of cycles, the static load ratio, the cyclic load ratio and the uniaxial compressive strength, is proposed which can be used for feasibility studies or preliminary design of pile foundations on soft rock subjected to cyclic loading.

파랑하중에 의한 경사식방파제의 제체와 주변지반의 침하거동 (Settlement Behavior of Rubble Mound Breakwater and Its Surrounding Seabed due to Wave-Loads)

  • 윤성규;김태형;이규환;이광열
    • 한국지반공학회논문집
    • /
    • 제27권12호
    • /
    • pp.85-96
    • /
    • 2011
  • 방파제는 태풍 또는 바람 등으로 발생된 파랑으로부터 해안, 항만시설을 보호하고 항내 수역의 정온도 확보를 위한 중요한 구조물이다. 국내에 가장 일반적인 방파제중 하나인 경사식 방파제를 본 연구과제로 선정하였다. 경사식 방파제는 정적조건만을 고려하여 설계되었다. 최근에 파랑작용에 따른 동적파압도 설계에서 고려하고 있다. 하지만 동적파압을 경사식 방파제의 경사면에만 국한하여 적용시키고, 적용된 파압 역시 등가파압으로 가정하였다. 이것은 방파제에 실제로 작용하는 파압분포와 다르다. 따라서 본 연구에서는 방파제경사면에 작용하는 파압을 등가파압이 아닌 실제 작용하는 시간이력파압을 적용하고 파압을 경사방파제의 경사면뿐만 아니라 해저지반에 추가적으로 고려하였다. 이를 반영한 수치해석을 통해 산출된 최대침하량이 현재의 설계법에 의해 산출된 최대침하량과 비교 시 상당한 차이가 있는 것으로 나타났다.

Personal Computer를 이용한 침하 안정 관리기법 (Settlement Data Acquisition and Analysis Technique by Personal Computer)

  • 송정락;여유현
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1991년도 추계학술발표회 논문집 지반공학에서의 컴퓨터 활용 COMPUTER UTILIZATION IN GEOTECHNICAL ENGINEERING
    • /
    • pp.332-347
    • /
    • 1991
  • 연약 지반의 침하안정관리를 위하여서는 장래의 침하를 정확히 예측하는 것이 매우 중요하다. 이를 위한 기존의 방법으로는 Asaoka 법, 쌍곡선법, Hoshino 법 등의 여러가지 방법들이 사용된다. 이 방법들은 압밀 이론 및 경험에 근거하여 침하 계측자료들을 수학적 방법으로 처리하여 장래의 침하를 예측한다. 그러나 이 방법들에 의해 예측된 침하량과 실제 관측된 침하량의 상관계수(Correlation Coefficient)는 비교적 낮으며(0.8~0.9), 설계 하중에 대한 잔류 침하예측에 있어서도 뚜렸한 방법을 제시하지 못하는 실정이다. 본 고에서는 현장 침하계측을 현장 압밀시험으로 취급하여 그로부터 압밀계수(Cv)와 압축지수(Cc)를 구하였으며 장래 임의의 시점에서의 침하 혹은 압밀도를 구하기 위해서 현장 계측으로 부터 구해진 Cv, Cc 값을 사용하였다. 이 방법에 의하여 예측된 장래 침하량과 실제 침하량 사이의 상관계수는 기존 방법보다 훨씬 높은 값(0.97~0.99)을 보여주었으며, 지반 개량후 설계하중에 대한 잔류 침하도 합리적으로 구할 수 있었다. 상기 방법은 방대한 계산과정을 필요로 하나 오늘날 대중화된 개인용 컴퓨터를 이용하여 신속하고 효과적으로 수행될수 있었다. 본 고는 이 방법의 개요와 실제 현장 계측 자료에 적용된 결과를 제시하였다.

  • PDF