• Title/Summary/Keyword: Load voltage

Search Result 3,116, Processing Time 0.026 seconds

A Study on the Characteristic of Capacitor Current by Voltage Harmonics (전압 고조파에 의한 커패시터 전류 특성 해석)

  • Kim, Jong-Gyeum;Kim, Sung-Hyun;Kim, Il-Jung
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.2
    • /
    • pp.148-153
    • /
    • 2009
  • As the increasing of non-linear load, we have a growing interest in power quality. Power quality has come to the voltage quality. Voltage harmonics consist in at the PCC by the non-linear load. Capacitor is generally used for the power compensation and as the passive filter by the serial connection with reactor. Capacitor has low impedance as the frequency increases, so easily fall down by the harmonic component of non-linear load. Small voltage of low-order acts on quite a few at the capacitor by the current increase. In this paper, we measured the magnitude and angle of voltage at the PCC and calculated under the same condition. we checked out that lower voltage of higher order produces current magnification.

Measurement and Analysis of Voltage Drop in Traction Power Supply System (전기철도 급전시스템의 안정화를 위한 전압강하 측정 결과 분석)

  • Kim, Joo-Rak;Lee, Young-Heum
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.2210-2211
    • /
    • 2011
  • Load capacity varies according to a day of the week in traction power supply system, because time schedule in railway is changed as demand for passengers and freights. Therefore, Voltage drop also varies as load capacity. In Korea railway, Voltage collected from catenary in train is decreased, as load supplied traction power supply system is increased. Therefore, investigation about voltage drop should be performed, before development of countermeasure against voltage drop. The investigation can be performed by simulation or field test. Naturally, field test is more precise than simulation. In addition, field test should be carried out at peak load. This paper presents test and analysis about voltage drop in railway. The test is performed in both a day of the week and weekend. The analysis is figured out comparison load capacity between two days and voltage drop across terminal.

  • PDF

Analysis on the Characteristics of Voltage Unbalance Factor by Load Variations (부하 변동에 의한 전압불평형율의 특성 해석)

  • Kim, Jong-Gyeum;Park, Young-Jeen;Lee, Eun-Woong
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.54 no.1
    • /
    • pp.47-53
    • /
    • 2005
  • Most of the loads in industrial power distribution systems are balanced and connected to three power systems. However, in the user power distribution systems, most of the loads are single & three phase and unbalanced, generating voltage unbalance. Voltage unbalance factor is mainly affected by load system rather than stable power system. Unbalanced voltage will draw a highly unbalanced current. As a result, the three-phase currents may differ considerably, thus resulting in an increased temperature rise in the machine. This paper presents a scheme on the characteristics of voltage and current unbalance factor under the load variation at the three phase 4-wire system. Load unbalance factor is measured by the power quality measurement apparatus and compared by the current unbalance factor. Two methods are indicated similar results. The voltage unbalance factor of the three-phase 4-wire system is approved by the field measurement. Each phase has an impedance each other by the unbalanced operation pattern and give rise to voltage unbalance.

Experimental Examinations on Protective Effects of SPDs Associated with the Protective Distance and Type of Load (보호거리와 부하 유형에 따른 SPD의 보호효과에 대한 실험적 고찰)

  • Lee, Bok-Hee;Kim, You-Ha;Ahn, Chang-Hwan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.10
    • /
    • pp.81-88
    • /
    • 2012
  • Surge protective devices(SPDs) are widely used as a most effective means protecting the electrical and electronic equipment against overvoltages such as lightning and switching surges. When installing SPDs, it is essential that the voltage protection level provided by SPDs should be lower than the withstand voltage of the equipment being protected. But even the proper selection of SPDs are achieved, the voltage at the equipment terminal may be higher than the residual voltage of SPD due to the reflection and oscillation phenomena. This paper was focused on the investigations of the conditions for which the equipment is protected by an SPD taking into account the influences of the protective distance and type of load. The protective effects of SPD with voltage-limiting component were analyzed as functions of types of load and protective distance between the SPD and load. As a result, in the cases of long protective distances, capacitive loads and loads with high resistance, the voltage at the load terminal was significantly higher than the residual voltage of SPD. It was found that the proper installation of SPDs should be carried out by taking into account the protective distance and type of load to achieve reliable protection of electronic equipments against surges.

An Adaptive Undervoltage Load Shedding Against Voltage Collapse Based Power Transfer Stability Index

  • Nizam, Muhammad;Mohamed, Azah;Hussain, Aini
    • Journal of Electrical Engineering and Technology
    • /
    • v.2 no.4
    • /
    • pp.420-427
    • /
    • 2007
  • This paper highlights the comparison of a proposed methods named adaptive undervoltage load shedding based PTSI techniques for undervoltage load shedding and two previous methods named Fixed Shed Fixed Delay (FSFD) and Variable Shed Variable Delay (VSVD) for avoiding voltage collapse. There are three main area considerations in load shedding schemes as the amount of load to be shed, the timing of load shedding event, and the location where load shed is to be shed. The proposed method, named as adaptive UVLS based PTSI seem to be most appropriate among the uncoordinated schemes. From the simulation result can be shown the Adaptive UVLS based PTSI give faster response, accurate and very sensitive control for the UVLS control technique. This technique is effectively when calculating the amount to be shed. Therefore, it is possible to bring the voltage to the threshold value in one step. Thus, the adaptive load shedding can effectively reduce the computational time for control strategy.

DC Link Voltage Controller for Three Phase Vienna Rectifier with Compensated Load Current and Duty (부하 전류 및 듀티를 보상한 3상 비엔나 정류기의 출력 전압 제어 기법)

  • Lee, Seung-Tae;Lim, Jae-Uk;Kim, Hag-Wone;Cho, Kwan-Yuhl;Choi, Jaeho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.1
    • /
    • pp.32-39
    • /
    • 2018
  • A new dc link voltage controller for a three-phase Vienna rectifier is proposed in this study. This method uses load current and duty information to control dc link voltage. The load current affects the capacitor current and varies the output voltage. Existing methods do not perfectly consider the load current. By considering load current with duty compensation in the proposed method, the transient response is improved by the load variation regardless of the input voltage. The effectiveness of the proposed method is compared with other control methods when the load changes rapidly using PSIM simulation and experiment.

A Study on the Effective Enhancement of the Load Power Factor Using the Load Power Factor Sensitivity of Generation Cost (부하역률 감도기법 적용에 의한 효율적인 부하역률 개선에 관한 연구)

  • Lee Byung Ha;Kim Jung-Hoon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.1
    • /
    • pp.18-24
    • /
    • 2005
  • Various problems such as the increase of the power loss and the voltage instability may often occur in the case of low load power factor. The demand of reactive power increases continuously with the growth of active power and the restructuring of electric power companies makes the comprehensive management of reactive power a troublesome problem, so that the systematic control of load power factor is required. In this paper, the load power factor sensitivity of the generation cost is derived and it is used for determining the locations of reactive power compensation devices effectively and for enhancing the load power factor appropriately. In addition, the voltage variation penalty cost is introduced and the integrated costs including the voltage variation penalty cost are used for determining the value of the load power factor from the point of view of the economic investment and voltage regulation. It is shown through the application to a large-scale power system that the load power factor can be enhanced effectively and appropriately using the load power factor sensitivity and integrated costs.

Resonance characteristics and electrical properties of PZT-piezoelectric transformer (PZT계 압전변압기의 공진특성과 전기적 성질)

  • 박순태;정수태;이종헌
    • Electrical & Electronic Materials
    • /
    • v.8 no.1
    • /
    • pp.27-34
    • /
    • 1995
  • The analysis of nonlinear equivalent circuit and the resonance characteristics of input current and output voltage were simulated, and their electrical properties are discussed in the transverse-type piezoelectric ceramic transformer. The nonlinear resonance characteristics of input current and output voltage showed by the thermal effect due to a higher driving current, the nonlinearity increased greatly as driving current increased. When load resistor was 100[M.ohm.], the nonlinear coefficient was -1.3. The nonlinear resonance curve of input current and output voltage for a variation of input voltage and load resistor agreed with the discussed theory. The output voltage increased nearly proportioned to input voltage when load resistors were below 50[M.ohm.], the voltage step-up ratio decreased when a load resistor was 100[M.ohm.] and their maximum value was 950.

  • PDF

3-Phase Hybrid Series Active Power Filter with Instantaneous Voltage Fluctuations Compensation (순간전압변동 보상 기능을 갖는 3상 하이브리드형 직렬 능동전력필터)

  • 한석우;최규하
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.5 no.6
    • /
    • pp.544-551
    • /
    • 2000
  • In this paper, 3-phase hybrid series active power filter for compensate current harmonics, voltage drop and unbalanced voltage in the network presented. The proposed system is implemented with a space vector modulation voltage source inverter and a high pass filter connected in parallel to the power system. Here the load is six-pulses thyristor rectifier. The phase angle detected in order to generation reference voltage at load terminal is synchronized with the positive sequence component of the unbalanced source by using symmetrical component transformation. The proposed system has an function harmonic isolation between source and load, voltage regulation, and unbalance compensation. Therefore, what the power system is improved quality, the source current is maintained as a nearly sinusoidal waveform and the load voltage is regulated with a rated voltage regardless of the source variation condition. To verify the validity of the proposed compensating system, the computer simulation and experiment are carried out.

  • PDF

Countermeasure of Voltage Sag in Radial Power Distribution System using Load Transfer Switching (부하 절환 스위칭을 이용한 방사상 배전계통에서의 순간전압강하 대책)

  • Yun, Sang-Yun;Oh, Jung-Hwan;Kim, Jae-Chul
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.49 no.11
    • /
    • pp.558-565
    • /
    • 2000
  • In this paper, we propose a method for mitigating for mitigating the effect of voltage of voltage sag in radial power distribution systems using load transfer switching (LTS). The term of LTS is defined that the weakness load points for voltage sag transfer to the alternative source during the fault clearing practices. The sequenced of proposed LTS method is divided into the search of weakness points for voltage sag using the risk assessment model and transfer behavior of weakness points. The search of weakness point is carried out using the risk assessment model of voltage sag and Monte Carlo simulation method and the historical reliability data in Korea Electric Power Corporation (KEPCO) are also used. Through the case studies, we verify the effectiveness of proposed LTS method and present the searching method of effective application points of LTS method using the risk assessment model.

  • PDF