• Title/Summary/Keyword: Load unbalanced control

Search Result 105, Processing Time 0.027 seconds

Voltage Control of Stand-Alone Inverter for Power Quality Improvement Under Unbalanced and Non-linear Load (불평형 및 비선형부하 시 전력품질 향상을 위한 독립형 인버터의 전압제어 기법)

  • Lee, Wujong;Jo, Jongmin;Cha, Hanju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.4
    • /
    • pp.567-575
    • /
    • 2016
  • This paper proposed the voltage control of stand-alone inverter for power quality improvement under unbalanced and non-linear load. The 3-phase DC-AC inverter controls CVCF(Constant Voltage Constant Frequency) and selective harmonic eliminate method in stand-alone mode by PR controller, and the stand-lone inverter supplies stable sinusoidal voltage to balanced, unbalanced and non-linear loads. The total harmonic distortion(THD) of line-to-line load voltage($V_{LL}$) is 1.2% in the balanced load. THD of $V_{LL}$ is reduced from 5.2% to 1.4% and 6.7% to 3.5%, respectively unbalanced and non-linear load. The stand-alone inverter can be supplies sinusoidal balanced voltage to unbalanced load because the voltage unbalanced factor(VUF) of $V_{LL}$ is reduced from 5.2% to 1.4% in the unbalanced load. Feasibility of control method for a stand-alone inverter will be verified through 30kW stand-alone inverter system.

A STUDY ON THE REACTIVE POWER COMPENSATION OF THREE PHASE UNBALANCED LOAD FOR VAR SYSTEM (VAR 시스템에 의한 3 상 불평형 부하의 무효전력 보상에 관한 연구)

  • Jung, Yon-Taek;Seo, Young-Soo;Kim, Young-Bong;Kim, Han-Soo;Lee, Bong-Joo
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.531-534
    • /
    • 1989
  • In this paper, the way that input voltage and input line current as a control variable is provided as one unit is projected. Till no, have denied with three phase balanced load. But, in that case, total power factor compensation is difficult, for to control each phase at unbalanced load. Therefor, in this paper suggest of the scheme that three phase unbalanced load is controlled by each phase and input total power factor is compensated unit input factor. therefore, in this paper suggest that three phase unbalanced load is controlled and the method in compensation of unit input factor to be attended by unbalanced load. Besides, the object of control is calculating quantity for input voltage and input line current for the point at issuse make to improve of control method at unbalanced load. As a result, control system of each phase could maintain as a unit input total power factor has been state diviation error of 2% with unbalanced load.

  • PDF

A Novel Control Method of Combined System consists of Series Active Power Filter and Parallel Passive Power Filter to Compensate Current Harmonics and Unbalanced Source Voltages (전류 고조파와 불평형 전원 전압을 보상하는 직렬형 능동전력 필터와 병렬형 수동전력필터 병용시스템의 새로운 제어법)

  • O, Jae-Hun;Han, Yun-Seok;Kim, Yeong-Seok;Won, Chung-Yeon;Choe, Se-Wan
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.12
    • /
    • pp.615-623
    • /
    • 2001
  • In this paper, we study a series active power filter to compensate current harmonics and unbalanced source voltages. Conventional control methods for compensating unbalanced source voltages use source voltages to calculate compensation voltages, and in addition use load voltages to regulate load voltages. But the proposed control method uses load voltage to compensate unbalanced source voltages and regulate load voltages. And we propose a control method to reduce current harmonics which can calculate compensation voltages directly from source currents and load voltages. By well-matched operation of two control methods, the series active power filter can compensate current harmonics, unbalanced source voltages, and regulate load voltages. We compose a combined system of the series active power filter and parallel passive filters to confirm a validity of proposed control methods. The results from experiments are presented to demonstrate effectiveness of the proposed method.

  • PDF

STATCOM Control for Balancing the Unbalanced Loads (불평형 부하의 평형화를 위한 STATCOM 제어)

  • Im, Su-Saeng;Lee, Eun-Ung;Kim, Hong-Gwon
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.8
    • /
    • pp.522-528
    • /
    • 2000
  • In this paper, a static synchronous compensator(STATCOM), which in general compensates reactive power, is proposed in order to balance the unbalanced loads. Reference values for the compensation of the unbalanced loads currents are determined by 3-phase circuit analysis result. Also the STATCOM control unit is designed considering the proposed compensation scheme for the unbalanced loads. As a result, the effectiveness of the STATCOM for balancing the load currents is verified by computer simulations.

  • PDF

Dead Time Compensation of Stand-alone Inverter Under Unbalanced Load (불평형부하 시 독립형 인버터의 데드타임 보상기법)

  • Jeong, Jinyong;Jo, Jongmin;Lee, Junwon;Chae, Woo-Kyu;Cha, Hanju
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.2
    • /
    • pp.115-121
    • /
    • 2015
  • Stand-alone inverter supplies constant voltage to loads. However, when a three-phase stand-alone inverter supplies unbalanced load, the generated output voltages also become unbalanced. The nonlinear characteristics of inverter dead time cause a more serious distortion in the output voltage. With unbalanced load, voltage distortion caused by dead time differs from voltage distortion under balanced load. Phase voltages in the stationary reference frame include unbalanced odd harmonics and then, d-q axis voltages in the synchronous reference frame have even harmonics with different magnitude, which are mitigated by the proposed multiple resonant controller. This study analyzes the voltage distortion caused by unbalanced load and dead time, and proposes a novel dead time compensation method. The proposed control method is tested on a 10-kW stand-alone inverter system, and shows that total harmonic distortion (THD) is reduced to 1.5% from 4.3%.

An Output Voltage Balance Control of Grid Connected Inverter by Phase Current Control at Critical Load Unbalanced Condition (계통연계 인버터의 주요 부하 불평형 시 상전류 제어를 통한 부하 상전압 평형 제어)

  • Tae-Hyeon Park;Hag-Wone Kim;Kwan-Yuhl Cho;Joon-Ki Min;Won-Il Choi
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.28 no.1
    • /
    • pp.22-29
    • /
    • 2023
  • A grid-connected inverter can be used in grid-connected or stand-alone modes. Generally, a grid-connected inverter operates in a grid-connected mode, but the inverter operates in stand-alone mode if grid faults occur. In the stand-alone mode, the grid-connected inverter must supply electric power to a critical load that needs to receive stable power even though grid faults occur. Generally, three-phase loads are used as critical loads, but a single phase is configured in some cases. In these conditions, the critical load is required to unbalance the load power consumption, which makes the three-phase load voltage unbalancd. This unbalanced voltage problem can cause fatal problems to the three-phase critical loads, and thus must be addressed. Hence, this paper proposes an algorithm to solve this unbalanced voltage problem by the individual phase current control. The proposed method is verified using Psim simulation and experiments.

Advanced Control of Three-Phase Four-Wire Inverters using Feedback Linearization under Unbalanced and Nonlinear Load Conditions (불평형 비선형 부하시 궤환선형화 기법을 이용한 3상 4선식 인버터의 제어 성능 개선)

  • Vo, Nguyen Qui Tu;Lee, Dong-Choon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.333-341
    • /
    • 2013
  • In this paper, a feedback linearization control is proposed to regulate the output voltages of a three-phase four-wire inverter under the unbalanced and nonlinear load conditions. First, the nonlinear model of system including the output LC filters is derived in the d-q-0 synchronous reference frame. Then, the system is linearized by the multi-input multi-output feedback linearization. The tracking controllers for d-q-0-components of three-phase line-to-neutral load voltages are designed by linear control theory. The experimental results have shown that the proposed control method gives the good performance in response to the load conditions.

An Improved Control Approach for DSTATCOM with Distorted and Unbalanced AC Mains

  • Singh, Bhim;Solanki, Jitendra
    • Journal of Power Electronics
    • /
    • v.8 no.2
    • /
    • pp.131-140
    • /
    • 2008
  • This paper presents a new control approach of DSTATCOM (distribution static compensator) for compensation of reactive power, unbalanced loading and harmonic currents under unbalanced non-sinusoidal ac mains. The control of DSTATCOM is achieved using Adaline based current estimator based on LMS algorithm to maintain source currents real and undistorted. The dc bus voltage of voltage source converter (VSC) working as DSTATCOM is maintained at constant voltage using a proportional-integral (PI) controller. The DSTATCOM system alongwith proposed control scheme is modeled in MATLAB to simulate the behavior of the system. The practical implementation of the DSTATCOM is carried out using dSPACE DS1104 R&D controller having TMS320F240 as a slave DSP. Simulated and implementation results are presented to demonstrate the effectiveness of the DSTATCOM with Adaline based control to meet the severe load perturbations with different types of loads (linear and non-linear) under distorted and unbalanced AC mains.

Optimal Design Analysis of Link-Mechanism and Development of Control Performance Estimation Program for Unbalanced Heavy-Loaded Drive System (구동 링크기구 최적설계 분석 및 대부하 구동제어 성능추정 프로그램 개발)

  • Choi, Keun-Kug;Lee, Man-Hyung;Ahn, Tae-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.6
    • /
    • pp.7-13
    • /
    • 1999
  • The unbalanced heavy-loaded elevation-driving system is composed of link-mechanism, hydraulic cylinder and compensator for the static unbalanced moment of the load. Control and compensation of elevation-driving system is very difficult because these mechanisms imply highly nonlinear properties due to hydraulic fluid characteristics and mechanical rotation of link-mechanism. In this study, through the analysis of the link-mechanism, the optimal design of the link-mechanism is suggested. Also to estimate the control performance of the unbalanced, heavy-loaded servo-controlled system, modeling and simulation of nonlinear system are carried out. To prove the validity of performance estimation program, simulation results are compared with the experimental results. Both results are similar, therefore this program will be helpful to study the improvement of the system control performance.

  • PDF

Analysis of Voltage Control of Stand-Alone Microgrid for High Quality Power Supply (고품질 전력공급을 위한 독립형 마이크로그리드의 전압제어 해석)

  • Jo, Jongmin;Lee, Hakju;Shin, Chang-hoon;Cha, Hanju
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.2
    • /
    • pp.253-257
    • /
    • 2016
  • This paper analyzes voltage control method in order to supply high-quality power for stand-alone microgrid. Stand-alone microgrid is composed of battery bank, stand-alone PCS and controllable loads. The main role of stand-alone PCS is to supply high-quality power to loads as main source by using stable voltage method regardless of load conditions. In particularly, output voltage of stand-alone PCS gets severely unbalanced voltage under unbalanced loads. Fundamental positive and negative sequences are transformed by two coordinates transformation which are rotated in each opposite direction, respectively. Each fundamental d-q voltage is regulated by each fundamental PI control. In addition, low-order harmonics are compensated through resonant controllers. Performance of stand-alone microgrid is tested for feasibility, and it is verified that output voltage of THD is improved to 1% from 2.2% under 50 kW balanced load, and is improved to 1.1% from 2.6% under 50 kW unbalanced load.