• Title/Summary/Keyword: Load transients

Search Result 73, Processing Time 0.024 seconds

A Study on the Characteristic Analysis of High Impedance Fault using EMTDC In Transmission System (송전계통에서 EMTDC틀 이용한 고저항 지락사고특성 분석에 관한 연구)

  • Park, Seong-Hun;Lee, Jong-Beom;Kim, Yeong-Han;Kim, Il-Dong;Han, Kyung-Nam;Jung, Chang-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.103-105
    • /
    • 1996
  • This paper describes real time dynamic tests on the digital distance relay using new digital test system including RTDS(Real Time Digital Simulator) in KEPRI. The RTDS is developed by the Manitoba HVDC Research Centre and consists of specialized hardware and software which allows transients simulation of electrical power systems in real time. From high impedance fault test, it is known that the characteristics of distance reach is influenced by load flow. A detailed discussion of relay test using the RTDS simulator, high impedance faults and test results are included in the paper.

  • PDF

Dynamic Characteristics of Digital Distance Relay Scheme Using Real Time Digital Simulator(RTDS) (RTDS를 이용한 Digital 거리계전기의 동특성 시험에 관한 연구)

  • Jung, Chang-Ho;Kim, Il-Dong;Kim, Yeong-Han;Kim, Sok-Il
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.109-111
    • /
    • 1996
  • This paper describes real time dynamic tests on the digital distance relay using new digital test system including RTDS(Real Time Digital Simulator) in KEPRI. The RTDS is developed by the Manitoba HVDC Reserch Centre and consists of specialized hardware and software which allows transients simulation of electrical power systems in real time. From high impedance fault test, it is known that the characteritics of distance reach is influenced by load flow. A detailed discussion of relay test using the RTDS simulator, high impedance faults and test results are included in the paper.

  • PDF

Electrical Modeling of 10kW PEMFC

  • Lee, Jin-Mok;Park, Ga-Woo;Choi, Jae-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2008.10a
    • /
    • pp.193-195
    • /
    • 2008
  • As arising the cost and decreasing of gasoline and fossil fuel, renewable energy sources such as photovoltaics, wind and fuel cell have been interested. Among of them, PEM fuel cells are good energy sources to provide reliable power at steady state regardless of weather, time of day and location as long as the fuel and air are supplied, but they cannot respond to electrical load transients as fast as desired. This is mainly due to their slow internal electrochemical and thermodynamic responses. Therefore, to use the fuel cells with high efficiency, this paper finds characteristic curve and understand operation of PEMFC based on three theoretical approaches such as activation, ohmic and concentration and make the model using MATLAB. That result was compared with real system to certify.

  • PDF

Progressive Inelastic Deformation Characteristics of Cylindrical Structure with Plate-to-Shell Junction Under Moving Temperature Front

  • Lee, Hyeong-Yeon;Kim, Jong-Bum
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.400-408
    • /
    • 2003
  • A study on the progressive inelastic deformation behavior of the 316 L stainless steel cylindrical structure with plate-to-shell junction under moving temperature front was carried out by structural test and analysis. The structural test intends to simulate the thermal ratcheting behavior occurring at the reactor baffle of the liquid metal reactor as free surface of hot sodium pool moves up and down under plant transients. The thermal ratchet load that heats the specimen up to 550$^{\circ}C$ was applied repeatedly and residual deformation was measured. The thermal ratcheting test was carried out with two types of cylindrical structures, one with plate to-shell junction and the other without the junction to investigate the effects of the geometric discontinuities on the global ratcheting deformation. The temperature distributions of the test specimens were measured and were used for the ratcheting analysis. The ratchet deformations were analyzed with the constitutive equation of the non-linear combined hardening model. The analysis results were in good agreement with those of the structural tests.

Parallel Operation of a Pair of SITs in order to raise the High Frequency and Power Half-Bridge Inverter (고주파 및 고전력 인버터 적용을 위한 Half-Bridge SIT의 병렬운전 특성고찰)

  • Choi, Sang-Won;Kim, Jin-Pyo;Lee, Jong-Ha
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.2234-2236
    • /
    • 1997
  • The SIT, a Static Induction Transistor, is a semiconductor switch that is also called the power junction field-effect transistor (power JFET). Its characteristics are similar to a MOSFET except that its power level is higher and its maximum frequency of operation is lower. The normal method to protect against internal circuit transients of the form of di/dt or dv/dt is the use of snubber circuits. However, the limits of di/dt and dv/dt are high enough for the SIT that it is possible to operate without snubber circuits. SITs can be connected in parallel in order to cope with higher load currents that the value of an individual device rating. The purpose of this study is to investigate the parallel operation of SITs. In this experiment, we used a half-bridge inverter, the output of inverter is up to almost 1MHz and 2kW. Experimental results show that the operation of parallel connected SITs are facilitated individually good current sharing. The reason is the positive temperature coefficient of resistance of the SIT.

  • PDF

Analytical study of house wall and air temperature transients under on-off and proportional control for different wall type

  • Han, Kyu-Il
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.46 no.1
    • /
    • pp.70-81
    • /
    • 2010
  • A mathematical model is formulated to study the effect of wall mass on the thermal performance of four different houses of different construction. This analytical study was motivated by the experimental work of Burch et al. An analytical solution of one -dimensional, linear, partial differential equation for wall temperature profiles and room air temperatures is obtained using the Laplace transform method. Typical Meteorological Year data are processed to yield hourly average monthly values. These discrete data are then converted to a continuous, time dependent form using a Fast Fourier Transform method. This study is conducted using weather data from four different locations in the United States: Albuquerque, New mexico; Miami, Florida; Santa Maria, California; and Washington D.C. for both winter and summer conditions. A computer code is developed to calculate the wall temperature profile, room air temperature, and energy consumption loads. Three sets of results are calculated one for no auxiliary energy and two for different control mechanism -- an on-off controller and a proportional controller. Comparisons are made for the cases of two controllers. Heavy weight houses with insulation in mild weather areas (such as August in Santa Maria, California) show a high comfort level. Houses using proportional control experience a higher comfort level in comparison to houses using on-off control. The result shows that there is an effect of mass on the thermal performance of a heavily constructed house in mild weather conditions.

Fundamental Frequency Estimation in Power Systems Using Complex Prony Analysis

  • Nam, Soon-Ryul;Lee, Dong-Gyu;Kang, Sang-Hee;Ahn, Seon-Ju;Choi, Joon-Ho
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.154-160
    • /
    • 2011
  • A new algorithm for estimating the fundamental frequency of power system signals is presented. The proposed algorithm consists of two stages: orthogonal decomposition and a complex Prony analysis. First, the input signal is decomposed into two orthogonal components using cosine and sine filters, and a variable window is adapted to enhance the performance of eliminating harmonics. Then a complex Prony analysis that is proposed in this paper is used to estimate the fundamental frequency by approximating the cosine-filtered and sine-filtered signals simultaneously. To evaluate the performance of the algorithm, amplitude modulation and harmonic tests were performed using simulated test signals. The performance of the algorithm was also assessed for dynamic conditions on a single-machine power system. The Electromagnetic Transients Program was used to generate voltage signals for a load increase and single phase-to-ground faults. The performance evaluation showed that the proposed algorithm accurately estimated the fundamental frequency of power system signals in the presence of amplitude modulation and harmonics.

A Seamless Mode Transfer Scheme for Single Phase Inverter with ESSs (에너지저장장치를 갖는 단상인버터에서 매끄러운 모드절환을 위한 알고리즘 개발)

  • Byen, Byeng-Joo;Seo, Hyun-Uk;Cho, Younghoon;Choe, Gyu-Ha
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.579-586
    • /
    • 2013
  • This paper proposes a mode transition algorithm between the grid-tied and the stand-alone operations for the single-phase inverter with the energy storage system. For the grid-tied operation, the dc-link voltage and the output current are required to be control. For the stand-alone mode, both the output voltage and the output current should be regulated. In order to mitigate a falling-off in control performance during transients in mode change, the load power estimation and the current selection schemes are proposed. The proposed method allows an optimized current reference is selected to reduce an output voltage drop and an excessive over-current in transient. To verify the effectiveness of the proposed method, both the simulation and the experiments for a 3kW single-phase inverter with the energy storage system have been conducted. From the results, it has been confirmed that the proposed method reduces a transient error as well as implementing smooth mode transition.

An Enhanced Power Sharing Strategy for Islanded Microgrids Considering Impedance Matching for Both Real and Reactive Power

  • Lin, Liaoyuan;Guo, Qian;Bai, Zhihong;Ma, Hao
    • Journal of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.282-293
    • /
    • 2017
  • There exists a strong coupling between real and reactive power owing to the complex impedances in droop based islanded microgrids (MGs). The existing virtual impedance methods consider improvements of the impedance matching for sharing of the voltage controlled power (VCP) (reactive power for Q-V droop, and real power for P-V droop), which yields a 1-DOF (degree of freedom) tunable virtual impedance. However, a weak impedance matching for sharing of the frequency controlled power (FCP) (real power for $P-{\omega}$ droop, and reactive power for $Q-{\omega}$ droop) may result in FCP overshoots and even oscillations during load transients. This in turn results in VCP oscillations due to the strong coupling. In this paper, a 2-DOF tunable adaptive virtual impedance method considering impedance matching for both real and reactive power (IM-PQ) is proposed to improve the power sharing performance of MGs. The dynamic response is promoted by suppressing the coupled power oscillations and power overshoots while realizing accurate power sharing. In addition, the proposed power sharing controller has a better parametric adaptability. The stability and dynamic performances are analyzed with a small-signal state-space model. Simulation and experimental results are presented to investigate the validity of the proposed scheme.

Analytical Structural Integrity for Welding Part at Piping Penetration under Seismic Loads (지진하중이 적용되는 배관 관통부의 용접에 대한 구조 건전성 해석)

  • Choi, Heon-Oh;Jung, Hoon-Hyung;Kim, Chae-Sil
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.1
    • /
    • pp.23-29
    • /
    • 2014
  • The purpose of this paper is to assess the structural integrity of piping penetrations for nuclear power plants. A piping qualification analysis describes loads due to deadweight, pressure difference acts normal to the plate, thermal transients, and earthquakes, among other events, on piping penetrations that have been modeled as an anchor. Amodel was analyzed using a commercial finite element program. Apiping penetration analysis model was constructed with an assembly of pipe, head fittings and sleeves. Normally, the design load, thus obtained, will consist of three moments and three forces, referred to a Cartesian coordinate system. When comparing the stress analysis results from each required cutting position, the general membrane stress intensities and local membrane plus bending stress intensities during a structural evaluation cannot exceed the allowable amount of stress for the design loads. Therefore, the piping penetration design satisfies the code requirements.