• Title/Summary/Keyword: Load test data base

Search Result 54, Processing Time 0.038 seconds

The Development of Short-term Load Forecasting System Using Ordinary Database (범용 Database를 이용한 단기전력수요예측 시스템 개발)

  • Kim Byoung Su;Ha Seong Kwan;Song Kyung Bin;Park Jeong Do
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.683-685
    • /
    • 2004
  • This paper introduces a basic design for the short-term load forecasting system using a commercial data base. The proposed system uses a hybrid load forecasting method using fuzzy linear regression for forecasting of weekends and Monday and general exponential smoothing for forecasting of weekdays. The temperature sensitive is used to improve the accuracy of the load forecasting during the summer season. MS-SQL Sever has been used a commercial data base for the proposed system and the database is operated by ADO(ActiveX Data Objects) and RDO(Remote Data Object). Database has been constructed by altering the historical load data for the past 38 years. The weather iDormation is included in the database. The developed short-term load forecasting system is developed as a user friendly system based on GUI(Graphical User interface) using MFC(Microsoft Foundation Class). Test results show that the developed system efficiently performs short-term load forecasting.

  • PDF

Short-term Electric Load Prediction Considering Temperature Effect (단파효과를 고려한 단기전력 부하예측)

  • 박영문;박준호
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.35 no.5
    • /
    • pp.193-198
    • /
    • 1986
  • In this paper, 1-168 hours ahead load prediction algorithm is developed for power system economic weekly operation. Total load is composed of three components, which are base load, week load and weather-sensitive load. Base load and week load are predicted by moving average and exponential smoothing method, respectively. The days of moving average and smoothing constant are optimally determined. Weather-sensitive load is modeled by linear form. The paramiters of weather load model are estimated by exponentially weighted recursive least square method. The load prediction of special day is very tedious, difficult and remains many problems which should be improved. Test results are given for the day of different types using the actual load data of KEPCO.

  • PDF

End Bearing Behavior of Drilled Shafts in Rock (암반에 근입된 현장타설말뚝의 선단지지거동)

  • Kwon, Oh-Sung;Kim, Kyung-Taek;Lee, Young-Chul;Kim, Myoung-Mo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.603-610
    • /
    • 2005
  • The end bearing behavior of piles socketed in weathered/soft rock is generally dependent upon the mass conditions of rock with fractures rather than the strength of intact rock. However, there are few available data and little guidance in the prediction of the end bearing capacity of drilled shafts socketed in weathered/soft rock, considering rock mass weathering. Therefore, a database of 13 load tests was constructed first, and new empirical relationships between the base reaction modulus of piles in rock and rock mass properties were developed. No correlation was found between the compressive strengths of intact rock and the base reaction modulus of weathered/soft rock. The ground investigation data regarding the rock mass conditions(e.g. Em, Eur, RMR, RQD) was found to be highly correlated with the base reaction modulus, showing the coefficients of correlation greather than 0.7 in most cases. Additionally, the applicability of existing methods for the end bearing capacity of piles in rock was verified by comparison with the field test data.

  • PDF

A Study on the Load Sharing Ratio and the Settlement of Prebored Open-Ended Steel Pipe Piles (매입 개단 강관말뚝의 하중분담률과 침하량 분석 연구)

  • Chea min Kim;Ki hwan Kim;Do kyun Yoon;Youngkyu Choi
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.1
    • /
    • pp.39-51
    • /
    • 2023
  • The bearing capacity of the prebored pile has been studied by many researchers. However, The bearing capacity of the prebored pile has been studied by many researchers. However, comparative studies between design data and pile load test data on the load sharing ratio and the settlement were insignificant. Therefore, the design data and the static load test results were compared for the prebored open-end steel piles. In the compressive static pile load test, the load sharing ratios of the base resistance and the shaft resistance were 13%~40% and 60%~87%, respectively and the settlements were measured 2.2mm~4.7mm. In the current bearing capacity calculation formula, the base resistance was shared between 54% and 75%, and the shaft resistance was shared between 25% and 46% and the settlements were calculated about 19.8mm~23.6mm. The settlement in the current bearing capacity calculation formula was 321% to 776% (average : 445%) larger than the settlement in the result of load test. When the settlement were calculated using the load sharing ratio in the pile load tests, it was 137% to 525% larger than the test settlement, and it was as large as 204% on average. It was confirmed that an appropriate evaluation of the load sharing ratio had an important effect on the calculation of pile settlement.

A Study on Prediction of Fatigue Life and Shock Fracture for the Engine Base of Auxiliary Power Unit for Tracked Vehicle (보조동력장치 엔진 Base의 피로수명 예측 및 충격파손에 관한 연구)

  • Lee, Sang-Bum;Chung, Kyung-Taek;Shin, Jae-Ho;Jang, Hwan-Young;Suh, Jeong-Se
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.4
    • /
    • pp.86-92
    • /
    • 2008
  • This paper is to investigate the behavior of linear static structure stress, the fatigue and experimental shock fracture far engine base in the Auxiliary Power Unit to resolve its restricted electrical power problem. The shock fracture test was experimentally made under MIL standard criteria. The numerical results by finite element method had a good agreement with those from the shock test. The design data of predicting the fracture at the initial crack and the damage behavior of structure with shock and vibration load in the battle field can be obtained from shock test. In the functional shock test, the crack at the side parts of the engine base was found at peak acceleration of 40g.

Performance Monitoring and Load Analysis of Wind Turbine (풍력발전기의 성능 모니터링 및 하중분석)

  • Bae, Jae-Sung;Kim, Sung-One;Youn, Joung-Eun;Kyung, Nam-Ho
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.385-389
    • /
    • 2004
  • Test facilities for the wind turbine performance monitoring and mechanical load measurements are installed in Vestas 100 kW wind turbine in Wollyong test site, Jeju island. The monitoring system consists of Garrad-Hassan T-MON system, telemetry system for blade load measurement, various sensors such as anemometer, wind vane, strain gauge, power meter, and etc. The experimental procedure for the measurement of wind turbine loads, such as edgewise(lead-lag) bending moment, flapwise bending moment, and tower base bending moment, has been established. Strain gauges are on-site calibrated against load cell prior to monitoring the wind turbine loads. Using the established monitoring system, the wind turbine is remotely monitored. From the measured load data, the load analysis has been performed to obtain the load power spectral density and the fatigue load spectra of the wind turbine.

  • PDF

End Bearing Behavior of Drilled Shafts in Weathered Rock (풍화된 암반에 근입된 현장타설말뚝의 선단지지거동)

  • Kwon, Oh Sung;Kim, Myoung Mo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.4C
    • /
    • pp.197-203
    • /
    • 2008
  • The end bearing behavior of piles socketed in weathered/soft rock is generally dependent upon the rock mass conditions with fractures rather than the strength of intact rock. Therefore, a database which includes 13 load tests performed on cast-in-place concrete piles and soil investigation data at the field test sites was made first, and new empirical relationships between the base reaction modulus of piles in rock and rock mass properties were developed. No correlation was found between the compressive strengths of intact rock and the base reaction modulus of weathered/soft rock. The ground investigation data regarding the rock mass conditions (e.g. Pressuremeter modulus and limit pressure, RMR, RQD) was found to be highly correlated with the base reaction modulus, showing the coefficients of correlation greater than 0.7 in most cases. In addition, the applicability of existing methods for the end bearing capacity of piles in rock was verified by comparison with the field test data.

Reliability analysis and evaluation of LRFD resistance factors for CPT-based design of driven piles

  • Lee, Junhwan;Kim, Minki;Lee, Seung-Hwan
    • Geomechanics and Engineering
    • /
    • v.1 no.1
    • /
    • pp.17-34
    • /
    • 2009
  • There has been growing agreement that geotechnical reliability-based design (RBD) is necessary for establishing more advanced and integrated design system. In this study, resistance factors for LRFD pile design using CPT results were investigated for axially loaded driven piles. In order to address variability in design methodology, different CPT-based methods and load-settlement criteria, popular in practice, were selected and used for evaluation of resistance factors. A total of 32 data sets from 13 test sites were collected from the literature. In order to maintain the statistical consistency of the data sets, the characteristic pile load capacity was introduced in reliability analysis and evaluation of resistance factors. It was found that values of resistance factors considerably differ for different design methods, load-settlement criteria, and load capacity components. For the total resistance, resistance factors for LCPC method were higher than others, while those for Aoki-Velloso's and Philipponnat's methods were in similar ranges. In respect to load-settlement criteria, 0.1B and Chin's criteria produced higher resistance factors than DeBeer's and Davisson's criteria. Resistance factors for the base and shaft resistances were also presented and analyzed.

Shear Load Transfer Characteristics of Friction Piles in Deep Soft Clay (대심도 연약지반상 마찰말뚝의 주면하중전이 거동 분석)

  • Moon, Joon-Shik;Paek, Jin-Yeol;Jeong, Sang-Seom;Ko, Jun-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.10
    • /
    • pp.55-67
    • /
    • 2011
  • The shear load distribution and deformation of offshore friction piles are investigated using experimental tests and a numerical analysis. Special attention is given to the soil-pile interaction of axially loaded pile. A framework for determining the f-w curve is proposed based on both theoretical analysis and experimental load test data base. A numerical analysis that takes into account the proposed f-w curves was performed for major parameters on pile-soil interaction such as the pile diameter, the pile length, and the soil condition. Based on the analysis, it is shown that the proposed f-w method is capable of predicting the behavior of a friction pile in deep soft clay. Through comparisons with case histories and finite element results, it is found that the proposed f-w curves are more appropriate and realistic m representing the pile-soil interaction of axially loaded piles in deep soft clay than that of existing f-w method.

Condition Evaluation of the Pavement Foundations Using Multi-load Level FWD Deflections (다단계 하중 FWD를 사용한 도로기초 상태평가 연구)

  • Park, Hee-Mun;Kim, Richard Y.;Park, Seong-Wan
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.261-271
    • /
    • 2003
  • A condition evaluation procedure for the pavement foundations using multi-load level Falling Weight Deflectometer(FWD) deflections is presented in this paper. A dynamic finite element program incorporating a stress-dependent material model, was used to generate the synthetic deflection database. Based on this synthetic database, the relationships between surface deflections and critical responses, such as stresses and strains in base and subgrade layers, have been established. FWD deflection data, Dynamic Cone Penetrometer(UP) data, and repeated load resilient modulus testing results used in developing this procedure were collected from the Long Term Pavement Performance (LTPP) and North Carolina Department of Transportation (NCDOT) database. Research effort focused on investigation of the effect of the FWD load level on the condition evaluation procedures. The results indicate that the proposed procedure can estimate the pavement foundation conditions. It is also found that structurally adjusted Base Damage Index (BDI) and Base Curvature Index (BCI) are good indicators for the prediction of stiffness characteristics of aggregate base and subgrade respectively. A FWD test with a load of 66.7 kN or less does not improve the accuracy of this procedure. Results from the study for the nonlinear behavior of a pavement foundations indicate that the deflection ratio obtained from multi-load level deflections can predict the type and quality of the pavement foundation materials.