• Title/Summary/Keyword: Load support performance

Search Result 320, Processing Time 0.025 seconds

Simulation of DC Microgrid with PV Generation (태양광 발전이 연계된 DC 마이크로 그리드의 시뮬레이션)

  • Park, Chul-Won
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.66 no.4
    • /
    • pp.267-273
    • /
    • 2017
  • In recent years, there is an increasing demand for DC microgrid because the digital load due to DC increases and the efficiency of the distribution system increases due to loss of conversion losses and conversion stages due to reactive power compared to AC distribution. Currently, with the support of the KEPRI, the development of an electronic large-capacity circuit breaker for DC distribution protection, which has been underway since 2016, is proceeding. In this paper, as a part of this project, we modeled the DC microgrid connected with PV using PSCAD. The converter station, AC/DC converter control, PV and MPPT controller are designed. In order to evaluate the performance of the modeled DC microgrid, it is examined whether the voltage is adjusted according to the load variation.

Optimal Vertical Handover Control Policies for Cooperative Wireless Networks

  • Papadaki, Katerina;Friderikos, Vasilis
    • Journal of Communications and Networks
    • /
    • v.8 no.4
    • /
    • pp.442-450
    • /
    • 2006
  • Inter-operability between heterogeneous radio access technologies (RATs), in the sense of seamless vertical han-dover (VHO) support with common radio resource management (CRRM) functionalities, has recently attracted a significant research attention and has become a prominent issue in standardization fora. In this paper, we formulate the problem of load balancing between cooperative RAT's as a mathematical program and by trading off a pre-defined delay tolerance per request we propose a vertical handover batch processing (VHBP) scheme. To quantify the performance of the proposed VHBP scheme we compare it with a baseline processing scheme, where each VHO request is processed independently under a number of different network scenarios. Numerical investigations reveal significant net benefits of the proposed scheme compared with the baseline, both in terms of achieved load balancing levels but also with regard to the acceptance rate of the VHO requests.

The Behavior and Estimated Stiffness Rubber Pad for Disk Bearing (디스크 받침용 고무패드의 거동 및 강성추정)

  • Cho, Sung-Chul;Choi, Eun-Soo;Park, Joo-Nam;Kim, Man-Cheol
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.599-605
    • /
    • 2009
  • The aim of the present study is the characteristics of bridge rubber pads and suggested how to determine the stiffness the pads. A disk bearing is operated as an elastic bearing in the vertical direction and is composed of a Polyether Urethane (polyurethane) disk for elastic support and Polytetrafluoroethylene (PTFE) to accommodate movement. Static tests are conducted in a laboratory to determine the static behavior of a Polyurethane disk. Finite Element (FE) analysis is also performed to verify the static performance. For dynamic behavior, four disk bearings having the identical Polyurethane disk used in the static tests are installed in a full size railway bridge and tested under a running locomotive. From the tests results, the static and dynamic stiffness of disk bearings are estimated and compared with each other. In the procedure to estimate the stiffness of a pad, the dead load(pre-load) of a bridge and live load of a vehicle are considered.

  • PDF

High-Frequency GaN HEMTs Based Point-of-Load Synchronous Buck Converter with Zero-Voltage Switching

  • Lee, Woongkul;Han, Di;Morris, Casey T.;Sarlioglu, Bulent
    • Journal of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.601-609
    • /
    • 2017
  • Gallium nitride (GaN) power switching devices are promising candidates for high switching frequency and high efficiency power conversion due to their fast switching, low on-state resistance, and high-temperature operation capability. In order to facilitate the use of these new devices better, it is required to investigate the device characteristics and performance in detail preferably by comparing with various conventional silicon (Si) devices. This paper presents a comprehensive study of GaN high electron mobility transistor (HEMT) based non-isolated point-of-load (POL) synchronous buck converter operating at 2.7 MHz with a high step-down ratio (24 V to 3.3 V). The characteristics and performance of GaN HEMT and three different Si devices are analytically investigated and the optimal operating point for GaN HEMT is discussed. Zero-voltage switching (ZVS) is implemented to minimize switching loss in high switching frequency operation. The prototype circuit and experimental data support the validity of analytical and simulation results.

Patch load resistance of longitudinally stiffened webs: Modeling via support vector machines

  • Kurtoglu, Ahmet Emin
    • Steel and Composite Structures
    • /
    • v.29 no.3
    • /
    • pp.309-318
    • /
    • 2018
  • Steel girders are the structural members often used for passing long spans. Mostly being subjected to patch loading, or concentrated loading, steel girders are likely to face sudden deformation or damage e.g., web breathing. Horizontal or vertical stiffeners are employed to overcome this phenomenon. This study aims at assessing the feasibility of a machine learning method, namely the support vector machines (SVM) in predicting the patch loading resistance of longitudinally stiffened webs. A database consisting of 162 test data is utilized to develop SVM models and the model with best performance is selected for further inspection. Existing formulations proposed by other researchers are also investigated for comparison. BS5400 and other existing models (model I, model II and model III) appear to yield underestimated predictions with a large scatter; i.e., mean experimental-to-predicted ratios of 1.517, 1.092, 1.155 and 1.256, respectively; whereas the selected SVM model has high prediction accuracy with significantly less scatter. Robust nature and accurate predictions of SVM confirms its feasibility of potential use in solving complex engineering problems.

Simplified analysis method for anti-overturning of single-column pier girder bridge

  • Liang Cao;Hailei Zhou;Zhichao Ren
    • Structural Engineering and Mechanics
    • /
    • v.91 no.4
    • /
    • pp.403-416
    • /
    • 2024
  • The single-column pier girder bridge, due to its low engineering cost, small footprint, and aesthetic appearance, is extensively employed in urban viaducts and interchange ramps. However, its structural design makes it susceptible to eccentric loads, flexural-torsional coupling effects, and centrifugal forces, among others. To evaluate its anti-overturning performance reasonably, it is crucial to determine the reaction force of the support for the single-column pier girder bridge. However, due to the interaction between vehicle and bridge and the complexity of vibration modes, it poses a significant challenge to analyze the theory or finite element method of single-column pier girder bridges. The unit load bearing reaction coefficient method is proposed in this study to facilitate the static analysis. Numerous parameter analyses have been conducted to account for the dynamic amplification effect. The results of these analyses reveal that the dynamic amplification factor is independent of road surface roughness but is influenced by factors such as the position of the support. Based on parameter analysis, the formula of the dynamic amplification factor is derived by fitting.

Approximate Design Optimization of Active Type Desk Support Frame for Float-over Installation Using Meta-model (메타모델을 이용한 플로트오버 설치 작업용 능동형 갑판지지프레임의 근사설계최적화)

  • Lee, Dong Jun;Song, Chang Yong;Lee, Kangsu
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.1
    • /
    • pp.31-43
    • /
    • 2021
  • In this study, approximate design optimization using various meta-models was performed for the structural design of active type deck support frame. The active type deck support frame was newly developed to facilitate both transportation and installation of 20,000 ton class offshore plant topside. Structural analysis was carried out using the finite element method to evaluate the strength performance of the active type deck support frame in its initial design stage. In the structural analysis, the strength performances were evaluated for various design load conditions that were regulated in ship classification organization. The approximate optimum design problem based on meta-model was formulated such that thickness sizing variables of main structure members were determined by achieving the minimum weight of the active type deck support frame subject to the strength performance constraints. The meta-models used in the approximate design optimization were response surface method, Kriging model, and Chebyshev orthogonal polynomials. The results from approximate design optimization were compared to actual non-approximate design optimization. The Chebyshev orthogonal polynomials among the meta-models used in the approximate design optimization represented the most pertinent optimum design results for the structure design of the active type deck support frame.

Fault Diagnosis of Low Speed Bearing Using Support Vector Machine

  • Widodo, Achmad;Son, Jong-Duk;Yang, Bo-Suk;Gu, Dong-Sik;Choi, Byeong-Keun;Kim, Yong-Han;Tan, Andy C.C;Mathew, Joseph
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.891-894
    • /
    • 2007
  • This study presents fault diagnosis of low speed bearing using support vector machine (SVM). The data used in the experiment was acquired using acoustic emission (AE) sensor and accelerometer. The aim of this study is to compare the performance of fault diagnosis based on AE signal and vibration signal with same load and speed. A low speed test rig was developed to simulate various defects with shaft speeds as low as 10 rpm under several loading conditions. In this study, component analysis was also performed to extract the feature and reduce the dimensionality of original data feature. Moreover, the classification for fault diagnosis was also conducted using original data feature without feature extraction. The result shows that extracted feature from AE sensor gave better performance in faults classification.

  • PDF

Performance Evaluation of Hash Join Algorithms Supporting Dynamic Load Balancing for a Database Sharing System (데이타베이스 공유 시스템에서 동적 부하분산을 지원하는 해쉬 조인 알고리즘들의 성능 평가)

  • Moon, Ae-Kyung;Cho, Haeng-Rae
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.12
    • /
    • pp.3456-3468
    • /
    • 1999
  • Most of previous parallel join algorithms assume a database partition system(DPS), where each database partition is owned by a single processing node. While the DPS is novel in the sense that it can interconnect a large number of nodes and support a geographically distributed environment, it may suffer from poor facility for load balancing and system availability compared to the database sharing system(DSS). In this paper, we propose a dynamic load balancing strategy by exploiting the characteristics of the DSS, and then extend the conventional hash join algorithms to the DSS by using the dynamic load balancing strategy. With simulation studies under a wide variety of system configurations and database workloads, we analyze the effects of the dynamic load balancing strategy and differences in the performances of hash join algorithms in the DSS.

  • PDF

A Study on an Equipment Performance Measurement System for Effective Bottleneck Management (병목 설비의 개선 활동에 유용한 설비관리 지표체계에 관한 연구)

  • Lee, Min-Ho;Lim, Sung-Mook
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.33 no.4
    • /
    • pp.100-113
    • /
    • 2010
  • Manufacturing companies' cost competitiveness with respect to equipment management can be achieved by satisfying additional market demands by their own capacity without purchasing additional equipments. In essence, it can be accomplished by making continuous investigation into bottlenecks and improvement on them. Therefore, equipment performance measure systems should be designed so that they can support manufacturing companies' such endeavors. With the purpose of establishing an effective equipment performance measurement system for detecting and improving bottlenecks, this study (1) suggests some desirable features that such a system should have, (2) evaluates conventional equipment performance measurement systems in terms of their usefulness for the detection and improvement of bottlenecks, and (3) proposes an improved system. We also perform a simulation experiment to demonstrate the limitations of the conventional systems and show how the proposed system can resolve the problems.