• Title/Summary/Keyword: Load support performance

Search Result 320, Processing Time 0.026 seconds

Design and Implementation of Web-Based Dictionary of Computing for Efficient Search Interface (효율적인 검색 인터페이스를 위한 웹 기반 컴퓨터 용어사전의 설계 및 구현)

  • Hwang, Byeong-Yeon;Park, Seong-Cheol
    • The KIPS Transactions:PartD
    • /
    • v.9D no.3
    • /
    • pp.457-466
    • /
    • 2002
  • In this paper, we designed and implemented a web-based dictionary of computing which keeps the data up-to-date. This dictionary shows the English information based on the FOLDOC (Free On-Line Dictionary Of Computing) dictionary file at the beginning of searching, and then one or more users can translate the information into Korean. This function is the new one only this dictionary has. Also, we can easily find any words we want to took up, even if we don't know the spelling completely, because the dictionary has various searching interfaces (searching for the words starting with inputted characters, searching for the words including inputted characters in the description, etc.) using a SQL Server DBMS and SQL. The performance test for CPU load factor shows that the server can support at least 1780 users at the same time.

A Design of Mobile Web Server Framework for SOAP Transaction and Performance Enhancement in Web2.0 (웹2.0에서 SOAP 처리와 성능 향상을 위한 모바일 웹 서버 프레임워크의 설계)

  • Kim, Yong-Tae;Jeong, Yoon-Su;Park, Gil-Cheol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.10
    • /
    • pp.1866-1874
    • /
    • 2008
  • Existing web server lowers the whole capacity of system because of the problem on the processing load of server by closing connection increasing code handshake operation, and remarkable decrease of server capacity if it is the state of overload. Also, there occurs disadvantages of increasing connection tine about client's request and response time because handling of client's multi-requests is not smooth because of thread block and it requests a lot of time and resources for revitalization of thread. Therefore, this paper proposes the extended web server which provides the technique for delay handling and improves the overload of server for better system capacity, communication support, and the unification which is the advantage of web service. And it evaluates the existing system(implemented at Tomcat 5.5) and the proposed mobile web server architecture. The extended server architecture provides excellent exchange condition for system capacity and evaluates improved web server architecture which combines multi-thread with thread pool. The proposed web service architecture in this paper got the better result of improved capacity benefit than the evaluation result of original Tomcat 5.5.

Development and Launching Test of 10N Class Liquid Propellant Rocket (10뉴턴급 추진력의 액체로켓 개발 및 발사시험)

  • Lee, Jung-Sub;Choi, Won-June;Kim, Min-Ki;Moon, Ki-Hyun;Song, Seong-Hwan;Kwon, Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.375-379
    • /
    • 2008
  • In this paper, a 10N class liquid propellant rocket utilizing a dissolving reaction of hydrogen peroxide is constructed and tested. Through a series of designs, seven orifices with a diameter of 200 ${\mu}m$ and a nozzle with a neck of 2.5mm in diameter and area ratio of 2.56 were made. The platinum coated on Isolite was used for catalyst. 90wt% peroxide pressed at 20 bar by nitrogen gas was used for performance evaluation. The length of the catalyst bed and the load of platinum was taken as the parameters for this experiment. For the catalyst support length of 4cm loaded on 5wt% platinum, satisfactory $c^*$ efficiency and stable thrust was observed. The light weight body of the rocket was composed of aluminum. Rocket rose about 10m with relatively constant velocity in launching test.

  • PDF

Shoulder Arthrokinematics of Collegiate Ice Hockey Athletes Based on the 3D-2D Model Registration Technique

  • Jeong, Hee Seong;Song, Junbom;Lee, Inje;Kim, Doosup;Lee, Sae Yong
    • Korean Journal of Applied Biomechanics
    • /
    • v.31 no.3
    • /
    • pp.155-161
    • /
    • 2021
  • Objective: There is a lack of studies using the 3D-2D image registration techniques on the mechanism of a shoulder injury for ice hockey players. This study aimed to analyze in vivo 3D glenohumeral joint arthrokinematics in collegiate ice hockey athletes and compare shoulder scaption with or without a hockey stick using the 3D-2D image registration technique. Method: We recruited 12 male elite ice hockey players (age, 19.88 ± 0.65 years). For arthrokinematic analysis of the common shoulder abduction movements of the injury pathogenesis of ice hockey players, participants abducted their dominant arm along the scapular plane and then grabbed a stick using the same motion under C-arm fluoroscopy with 16 frames per second. Computed tomography (CT) scans of the shoulder complex were obtained with a 0.6-mm slice pitch. Data from the humerus translation distances, scapula upward rotation, anterior-posterior tilt, internal to external rotation angles, and scapulohumeral rhythm (SHR) ratio on glenohumeral (GH) joint kinematics were outputted using a MATLAB customized code. Results: The humeral translation in the stick hand compared to the bare hand moved more anterior and more superior until the abduction angle reached 40°. When the GH joint in the stick hand was at the maximal abduction of the scapula, the scapula was externally rotated 2~5° relative to 0°. The SHR ratio relative to the abduction along the scapular plane at 40° indicated a statistically significant difference between the two groups (p < 0.05). Conclusion: With arm loading with the stick, the humeral and scapular kinematics showed a significant correlation in the initial section of the SHR. Although these correlations might be difficult in clinical settings, ice hockey athletes can lead to the movement difference of the scapulohumeral joints with inherent instability.

The Effects of Geometrical Imperfections on the Dynamic Characteristics of a Tapered Roller Bearing Cage (테이퍼 롤러 베어링 케이지의 불완전성이 통특성에 미치는 영향)

  • Ahn, Tae-Kil;Park, Jang-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.464-469
    • /
    • 2019
  • Tapered roller bearings are used widely in vans, trucks, and trains because they can support the vehicle in a stable manner even under a heavy load. The cage of a tapered roller bearing maintains the gap between the rollers, which prevents friction wear and suppresses heating. If the cage is severely deformed due to resonance, the roller may not be able to roll smoothly and even leave the cage. Consequently, it is very important to analyze the dynamic characteristics of the cage for reliable performance of a bearing. The cage essentially has geometrical tolerance in the manufacturing process. In this paper, the effects of those geometrical imperfections on the dynamic characteristics of the cage were investigated. As a result, natural frequency separation occurred near the natural frequency of the ideal cage due to geometrical imperfections. In addition, the interval was proportional to the magnitude of the geometric error, and the interval increased with increasing mode number.

A semi-supervised interpretable machine learning framework for sensor fault detection

  • Martakis, Panagiotis;Movsessian, Artur;Reuland, Yves;Pai, Sai G.S.;Quqa, Said;Cava, David Garcia;Tcherniak, Dmitri;Chatzi, Eleni
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.251-266
    • /
    • 2022
  • Structural Health Monitoring (SHM) of critical infrastructure comprises a major pillar of maintenance management, shielding public safety and economic sustainability. Although SHM is usually associated with data-driven metrics and thresholds, expert judgement is essential, especially in cases where erroneous predictions can bear casualties or substantial economic loss. Considering that visual inspections are time consuming and potentially subjective, artificial-intelligence tools may be leveraged in order to minimize the inspection effort and provide objective outcomes. In this context, timely detection of sensor malfunctioning is crucial in preventing inaccurate assessment and false alarms. The present work introduces a sensor-fault detection and interpretation framework, based on the well-established support-vector machine scheme for anomaly detection, combined with a coalitional game-theory approach. The proposed framework is implemented in two datasets, provided along the 1st International Project Competition for Structural Health Monitoring (IPC-SHM 2020), comprising acceleration and cable-load measurements from two real cable-stayed bridges. The results demonstrate good predictive performance and highlight the potential for seamless adaption of the algorithm to intrinsically different data domains. For the first time, the term "decision trajectories", originating from the field of cognitive sciences, is introduced and applied in the context of SHM. This provides an intuitive and comprehensive illustration of the impact of individual features, along with an elaboration on feature dependencies that drive individual model predictions. Overall, the proposed framework provides an easy-to-train, application-agnostic and interpretable anomaly detector, which can be integrated into the preprocessing part of various SHM and condition-monitoring applications, offering a first screening of the sensor health prior to further analysis.

Damaged cable detection with statistical analysis, clustering, and deep learning models

  • Son, Hyesook;Yoon, Chanyoung;Kim, Yejin;Jang, Yun;Tran, Linh Viet;Kim, Seung-Eock;Kim, Dong Joo;Park, Jongwoong
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.17-28
    • /
    • 2022
  • The cable component of cable-stayed bridges is gradually impacted by weather conditions, vehicle loads, and material corrosion. The stayed cable is a critical load-carrying part that closely affects the operational stability of a cable-stayed bridge. Damaged cables might lead to the bridge collapse due to their tension capacity reduction. Thus, it is necessary to develop structural health monitoring (SHM) techniques that accurately identify damaged cables. In this work, a combinational identification method of three efficient techniques, including statistical analysis, clustering, and neural network models, is proposed to detect the damaged cable in a cable-stayed bridge. The measured dataset from the bridge was initially preprocessed to remove the outlier channels. Then, the theory and application of each technique for damage detection were introduced. In general, the statistical approach extracts the parameters representing the damage within time series, and the clustering approach identifies the outliers from the data signals as damaged members, while the deep learning approach uses the nonlinear data dependencies in SHM for the training model. The performance of these approaches in classifying the damaged cable was assessed, and the combinational identification method was obtained using the voting ensemble. Finally, the combination method was compared with an existing outlier detection algorithm, support vector machines (SVM). The results demonstrate that the proposed method is robust and provides higher accuracy for the damaged cable detection in the cable-stayed bridge.

Impact of Inter-professional Attitude and Educational Burden on Clinical Nurses' Cardiopulmonary Resuscitation-related Self-efficacy Following Team-based Cardiopulmonary Resuscitation Simulation Training (팀 기반 심폐소생술 시뮬레이션 교육을 받은 임상간호사들의 전문직 간 태도 및 교육부담감이 심폐소생 관련 자기효능감에 미치는 영향)

  • Ok, Jong Sun;An, Soo Young;Kwon, Jeong Hwa
    • Journal of muscle and joint health
    • /
    • v.31 no.1
    • /
    • pp.22-30
    • /
    • 2024
  • Purpose: In-hospital cardiac arrest is rare, but often results in high mortality rates. Early and effective cardiopulmonary resuscitation (CPR) is crucial for survival and nurses are often the first responders. This study aimed to investigate how inter-professional attitudes and educational burdens affect self-efficacy related to CPR performance following team-based CPR simulation training. Methods: This retrospective observational study analyzed data from a satisfaction survey conducted after team-based CPR training sessions between January and November 2022. Of the 454 nurses surveyed, 238 were included in the study after excluding those with ambiguous responses. Multiple regression analysis was performed to assess factors influencing CPR self-efficacy. The factors examined included inter-professional attitudes and educational burden. Results: Higher levels of inter-professional attitudes, particularly regarding teamwork roles and responsibilities, lower educational burden, and a positive perception of CPR competence were all associated with improved CPR-related self-efficacy. Participants who reported higher engagement in teamwork, lower task load, and greater confidence in their CPR abilities demonstrated higher self-efficacy in performing CPR. Conclusion: Enhancing the competencies of nurses who may act as initial responders in CPR situations within or outside hospital settings can help save lives and support public health.

Rationalization of Gripper TBM Supporting System Pass through Serviced Subway Line (기존 운행선 직하부 통과 굴착에 따른 Gripper TBM 지보패턴 합리화 방안)

  • Hak-Young So;Kook Hwan Cho
    • Tunnel and Underground Space
    • /
    • v.34 no.4
    • /
    • pp.413-420
    • /
    • 2024
  • When planning gripper TBM, which is highly applicable to urban areas, the excavation characteristics are not considered. In addition the excavation stability and constructability are degraded by installing reinforcements in the adjacent construction site considering the relaxation load theory of the pre-existing NATM. In this study, a rationalization plan for the support was proposed considering the excavation characteristics of gripper TBM when planning reinforcements for adjacent pre-existing construction. The effect of excavation on the surrounding ground was analyzed by conducting three-dimensional stability analyses considering the construction stage for each excavation phase. In NATM, relaxation phenomenon is concentrated in tunnel face due to non-supporting time occurring simultaneously with excavation, but gripper TBM supports the ground around the tunnel face through the cutter head and skin plate, simultaneously causing ground relaxation behind the skin plate. Considering these excavation characteristics, problems in reinforcement planning for adjacent construction at the study site were pointed out. A performance improvement plan for a reasonable supporting system was proposed.

Design and Evaluation of a Channel Reservation Patching Method for True VOD Systems (True VOD 시스템을 위한 채널 예약 패칭 방법의 설계 및 평가)

  • Lee, Joo-Yung;Ha, Sook-Jeong;Bae, Ihn-Han
    • The KIPS Transactions:PartB
    • /
    • v.9B no.6
    • /
    • pp.835-844
    • /
    • 2002
  • The number of channels available to a video server is limited since the number of channels a video server can support is determined by its communication bandwidth. Several approaches such as batching, piggybacking and patching have been proposed to reduce I/O demand on the video server by sharing multicast data. Patching has been shown to be efficient in the matter of the cost for VOD systems. Unlike conventional multicast techniques, patching is a dynamic multicast scheme which enables a new request to join an ongoing multicast. In addition, true VOD can be achieved since a new request can be served immediately without having to wait for the next multicast. In this paper. we propose two types of channel reservation patching algorithm : a fixed channel reservation patching and a variable channel reservation patching. To immediately schedule the requests for popular videos, these algorithms reserve the channels of video server for the fixed number of popular videos or for the variable number of popular videos which is determined dynamically according to the load of video server. The performance of the proposed algorithms is evaluated through simulations, and compared with that of simple patching. Our performance measures are average defection rate, average latency, service fairness and the amount of buffered data according to video server loads. Simulation results show that the proposed channel reservation patching algorithms provide better performance compared to simple patching algorithm.