• Title/Summary/Keyword: Load support performance

Search Result 320, Processing Time 0.024 seconds

Investigation of Institutional Improvement through Evaluation of Zero-Energy Buildings (제로에너지 빌딩 평가를 통한 제도적 개선방안에 대한 조사 연구)

  • Chae, Sookwon;Kim, Juhwan;Chae, Hyunbyung
    • Journal of Energy Engineering
    • /
    • v.25 no.3
    • /
    • pp.83-94
    • /
    • 2016
  • Energy use has been recognized worldwide as a main cause of global warming and it is at the center of climate change. In this study, problems and measures of zero-energy building construction are investigated and analyzed. Based on the results, evaluation criteria of the zero-energy building are suggested. Performance related factors(Q) representing the environmental grade were divided into three categories as outdoor, indoor environment and maintenance. Energy related factors(LR) representing the energy load were divided into an energy, materials & resources, water cycle management, land use and transportation. Detailed fifty three items are listed for the evaluation under the consideration of energy, water cycle management sections gave weight. Upon receiving the first in the environment friendly certification system, Seoul Central Post Office and Seoul Metropolitan Water Supply Center evaluated. The reason why this score difference is due to lack of use of new generation energy building construction is required expensive costs so need expansion of governmental support. This effort is successful zero energy building construction and copes with global warming and climate change.

Test Rig Development for Identification of Rotordynamic Force Coefficients of Squeeze Film Dampers in Automotive Turbocharger Bearing Systems (자동차 터보차저 베어링 시스템에 적용되는 스퀴즈 필름 댐퍼의 동적계수 측정을 위한 실험장치 개발)

  • Hwang, Jisu;Ryu, Keun;Jeung, Sung-Hwa
    • Tribology and Lubricants
    • /
    • v.34 no.1
    • /
    • pp.33-41
    • /
    • 2018
  • This paper describes a new test rig for identification of rotordynamic force coefficients of squeeze film dampers (SFDs) in automotive turbochargers (TCs). Prior studies have mainly concentrated on relatively large-sized SFDs used in aircraft engines, turbocompressors, and turbopumps. The main objective of the current study is to propose a test rig for identification of dynamic force coefficients of small-sized SFDs (a journal diameter of ~11 mm). The current test rig consists of a journal, a SFD cartridge, four support rods, an upper structure, a data acquisition (DAQ) system, and an oil circulation unit. The annular gaps between the journal outer surface and SFD cartridge inner surface create SFD film lands. The damper has two parallel film lands separated by a central groove, having an axial length and depth of 3 mm. Each film land has a length of 4 mm with a $40{\mu}m$ radial clearance. The static load and dynamic impact tests identify the structural characteristics (i.e., stiffness and natural frequency) of the journal and assembled test rig. The measurements show good agreement with predictions. The SFD performance data from this test rig will be used to develop innovative TC rotor systems with improved NVH and reliability characteristics incorporating advanced SFD technology.

Statistical Energy Analysis of Low-Altitude Earth Observation Satellite (저궤도 지구관측 위성의 통계적 에너지 해석)

  • Woo, Sung-Hyun;Kim, Hong-Bae;Im, Jong-Min;Kim, Kyung-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.197-202
    • /
    • 2006
  • The low-altitude earth observation satellite is generally equipped with high performance camera as a main payload which is vulnerable to vibration environment. During the launch process of a satellite, the combustion and jet noise of launch vehicle produce severe acoustic environment and the acoustic loads induced may damage the critical equipments of the satellite including the camera. Therefore to predict and simulate the effect of the acoustic environment which the satellite has to sustain at the lift-off event is very important process to support the load-resistive design and test-qualification of components. Statistical Energy Analysis(SEA) has been widely used to estimate the vibro-acoustic responses of the structures and gives statistical but reliable results in the higher frequency region with less modeling efforts and calculation time than the standard FEA. In this study, SEA technique has been applied to a 3-Dimensional model of a low-altitude earth observation satellite to predict the acceleration responses on the structural components induced by the high level acoustic field in the launch vehicle fairing. In addition, the expected response on each critical component panel was calculated by the classical method in consideration of the mass loading and imposed sound pressure level, and then compared with SEA results.

  • PDF

Preparation of Porous Carbon Fiber by Using MgO Powder and Its Characteristics of Catalysts for Fuel Cell (MgO를 이용한 다공성 탄소 섬유 제조 및 이를 이용한 연료전지용 촉매 특성)

  • Nam, Kidon;Kim, Sang-Kyung;Lim, Seongyop;Peck, Donghyun;Lee, Byoungrok;Jung, Doohwan
    • Korean Chemical Engineering Research
    • /
    • v.46 no.6
    • /
    • pp.1142-1147
    • /
    • 2008
  • Nano-structured porous carbon fiber(PCF) for the catalyst supports of the direct methanol fuel cell (DMFC) were prepared from the mesophase pitch by using the nano-MgO powders. Specific surface area of the PCFs was $8{\sim}58m^2/g$ and surface pore structures had almost meso pore diameter of 10~20 nm which were depending on the amount of MgO spheres. Aqueous reduction method was used to load 60 wt% PtRu on the prepared PCF supports. The electro-oxidation activity and single cell performance of the 60 wt% Pt-Ru catalysts were measured by cyclic voltammetry and unit cell test. The performances of these catalysts increased by 5~10% compared with one of commercial catalyst.

Zone-Based Wireless Link-K Network Structure and Routing for Supporting Mission Group (작전임무그룹 지원을 위한 Zone 기반 무선 Link-K 네트워크 구조 및 라우팅)

  • Cheon, Minhwan;Baek, Hoki;Jee, Seungbae;Kim, Sangjun;Lim, Jaesung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.1
    • /
    • pp.108-120
    • /
    • 2017
  • To this end, the ROK military is developing a Korean Tactical Data Link (Link-K) in two stages: Basic and Completion types. Currently, the basic type of the Link-K has a limitations for supporting Mission Group(MG)s, such as to share unnecessary information and inefficient routing, because all RICCs simply broadcasts the same information in the basic type of the Link-K. In this paper, we propose a Zone-based Wireless Link-K network structure and a routing algorithm. To improve the effectiveness of the proposed routing algorithm, we have studied a filtering method that adjusts the message data according to the priority of the message and a method of controlling the load of the network. In order to evaluate the performance of the proposed scheme, it is proved that it is effective to support the mission task group compared with the existing wireless Link-K routing algorithm according to the operational scenario situation.

Impacts of green technologies in distribution power network

  • Suwanapingkarl, Pasist;Singhasathein, Arnon;Phanthuna, Nattaphong;Boonthienthong, Manat;Srivallop, Kwanchanok;Ketken, Wannipa
    • International Journal of Advanced Culture Technology
    • /
    • v.3 no.1
    • /
    • pp.90-100
    • /
    • 2015
  • Green technologies such as renewable energy resources, Electric Vehicles and Plug-in Hybrid Electric Vehicles (EVs/PHEVs), electric locomotives, etc. are continually increasing at the existing power network especially distribution levels, which are Medium Voltage (MV) and Low Voltage (LV). It can be noted that the increasing level of green technologies is driven by the reduction emission policies of carbon dioxide ($CO_2$). The green technologies can affect the quality of power, and hence its impacts of are analysed. In practical, the environment such as wind, solar irradiation, temperature etc. are uncontrollable, and therefore the output power of renewable energy in that area can be varied. Moreover, the technology of the EVs/PHEVs is still developed in order to improve the performance of supply and driving systems. This means that these developed can cause harmonic distortion as the control system is mostly used power electronics. Therefore, this paper aims to analyse the voltage variation and harmonic distortion in distribution power network in urban area in Europe due to the combination between wind turbine, hydro turbine, photovoltaic (PV) system and EVs/PHEVs. More realistic penetration levels of SSDGs and EVs/PHEVs as forecasted for 2020 is used to analyse. The dynamic load demands are also taken into account. In order to ensure the accurate of simulation results, the practical parameters of distribution system are used and the international standards such as Institute of Electrical and Electronics Engineers (IEEE) standards are also complied. The suggestion solutions are also presented. The MATLAB/Simulink software is chosen as it can support complicate modelling and analysis.

On the Performance Enhancements of VC Merging-capable Scheduler for MPLS Routers by Sequence Skipping Method (Sequence Skipping 방법을 이용한 MPLS 라우터의 VC 통합기능 스케쥴러의 성능 향상에 관한 연구)

  • Baek, Seung-Chan;Park, Do-Yong;Kim, Young-Beom
    • Journal of IKEEE
    • /
    • v.5 no.1 s.8
    • /
    • pp.111-120
    • /
    • 2001
  • VC merging involves distinguishing cells from an identical merged VC label. Various approaches have been proposed to help this identification process. However, most of them incur additional buffering, protocol overhead and/or variable delay. They make the provision of QoS difficult to achieve. So it was proposed a merge capable scheduler to support VC-merging (VCMS). However, in situations where all VCs are to be merged or the incoming traffic load is very low, it could happen that there are not enough non-merging cells to snoop. In this situation the scheduler uses special control cells to fill the empty time slots out. Too many control cells can cause high cell loss ratio and an additional packet transfer delay. To overcome the drawbacks, we propose a Sequence Skipping(SS) method where the sequencers skip the empty queues and insert SS cells. We show SS method is suitable for VC-merging and can reduce the cell loss ratio and the mean packet transfer delay through simulations.

  • PDF

Foundation Design the 151 story Incheon Tower in Reclamation Area

  • Abdelrazaq, Ahmad;Badelow, Frances;Kim, Sung-Ho;Park, Yung-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.157-171
    • /
    • 2009
  • A 151 storey super high-rise building located in an area of reclaimed land constructed over soft marine clay in Songdo, Korea is currently under design. This paper describes the design process of the foundation system of the supertall tower, which is required to support the large building vertical and lateral loads and to restrain the horizontal displacement due to wind and seismic forces. The behaviour of the foundation system due to these loads and foundation stiffness influence the design of the building super structure, displacement of the tower, as well as the raft foundation design. Therefore, the design takes in account the interactions between soil, foundation and super structure, so as to achieve a safe and efficient building performance. The site lies entirely within an area of reclamation underlain by up to 20m of soft to firm marine silty clay, which overlies residual soil and a profile of weathered rock. The nature of the foundation rock materials are highly complex and are interpreted as possible roof pendant metamorphic rocks, which within about 50m from the surface have been affected by weathering which has reduced their strength. The presence of closely spaced joints, sheared and crushed zones within the rock has resulted in deeper areas of weathering of over 80m present within the building footprint. The foundation design process described includes the initial stages of geotechnical site characterization using the results of investigation boreholes and geotechnical parameter selection, and a series of detailed two- and three-dimensional numerical analysis for the Tower foundation comprising over 172 bored piles of varying length. The effect of the overall foundation stiffness and rotation under wind and seismic load is also discussed since the foundation rotation has a direct impact on the overall displacement of the tower.

  • PDF

Enhanced NOW-Sort on a PC Cluster with a Low-Speed Network (저속 네트웍 PC 클러스터상에서 NOW-Sort의 성능향상)

  • Kim, Ji-Hyoung;Kim, Dong-Seung
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.29 no.10
    • /
    • pp.550-560
    • /
    • 2002
  • External sort on cluster computers requires not only fast internal sorting computation but also careful scheduling of disk input and output and interprocessor communication through networks. This is because the overall time for the execution is determined by reflecting the times for all the jobs involved, and the portion for interprocessor communication and disk I/O operations is significant. In this paper, we improve the sorting performance (sorting throughput) on a cluster of PCs with a low-speed network by developing a new algorithm that enables even distribution of load among processors, and optimizes the disk read and write operations with other computation/communication activities during the sort. Experimental results support the effectiveness of the algorithm. We observe the algorithm reduces the sort time by 45% compared to the previous NOW-sort[1], and provides more scalability in the expansion of the computing nodes of the cluster as well.

Evaluation of Load Capacity Reduction in RC Beam with Corroded FRP Hybrid Bar and Steel (철근부식을 고려한 FRP Hybrid Bar 및 일반 철근을 가진 RC 보의 내력저하 평가)

  • Oh, Kyung-Suk;Moon, Jin-Man;Park, Ki-Tae;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.2
    • /
    • pp.10-17
    • /
    • 2016
  • Steel corrosion is a very significant problem both to durability and structural safety since reinforcement has to support loads in tensile region in RC(Reinforced Concrete) member. In the paper, newly invented FRP Hybrid Bar and normal steel are embedded in RC beam member, and ICM (Impressed Current Method) is adopted for corrosion acceleration. Utilizing the previous theory of Faraday's Law, corrosion amount is calculated and flexural tests are performed for RC beam with FRP Hybrid Bar and steel, respectively. Corrosion amount level of 4.9~7.8% is measured in normal RC member and the related reduction of flexural capacity is measured to be -25.4~-50.8%, however there are no significant reduction of flexural capacity and corrosion initiation in RC samples with FRP Hybrid Bar due to high resistance of epoxy-coated steel to corrosion initiation. In the accelerated corrosion test, excellent performance of anti-corrosion and bonding with concrete are evaluated but durability evaluation through long-term submerged test is required for actual utilization.