• Title/Summary/Keyword: Load support performance

Search Result 320, Processing Time 0.023 seconds

Implementation of the mobility for Location Searching in Broadband Intelligence Wireless ATM Networks (광대역 지능 무선 ATM 망에서 위치 탐색을 위한 이동성 구현)

  • 정운석;박광채
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.3
    • /
    • pp.461-467
    • /
    • 2003
  • This paper proposes the method of mobility implementation for location searching in the intelligence wireless ATM networks that expand and apply standard broadband signaling capabilities, and analyze the performance based on the numerical algorithm. The existing B-ISDN UNI protocol stack demands the location search mechanism to determine the location of mobile terminal in the wireless ATM networks because it use single protocol through the fixed PTP interface or PTM interface that don't support terminal mobility. The proposed method make possible the dynamic mobility at a part of wireless access by minimizing the signaling load without a falling-off in system performance by using the intelligence network technology according to the expansion of ATM and B-ISDN signaling integration based on the fixed networks. We implemented the performance analysis by MFC modeling based on numerical algorithm, and realized the efficiency of expenses by carrying out the comparative signaling performance evaluation to measure the relative gains of location search service in the intelligence wireless ATM system. The obtained results have the flexibility to operate in the public B-ISDN network environment without a change of existing B-ISDN/ATM NNI signaling reference to support the wireless ATM access system, and can easily expand to correspond to terminal mobility and various multimedia services in the next broadband PCS.

Experimental and numerical investigations on seismic performance of a super tall steel tower

  • He, Minjuan;Li, Zheng;Ma, Renle;Liang, Feng
    • Earthquakes and Structures
    • /
    • v.7 no.4
    • /
    • pp.571-586
    • /
    • 2014
  • This paper presents experimental and numerical study on seismic performance of a super tall steel tower structure. The steel tower, with a height of 388 meters, employs a steel space truss with spiral steel columns to serve as its main lateral load resisting system. Moreover, this space truss was surrounded by the spiral steel columns to form a steel mega system in order to support a 12-story platform building which is located from the height of 230 meters to 263 meters. A 1/40 scaled model for this tower structure was made and tested on shake table under a series of one- and two-dimensional earthquake excitations with gradually increasing acceleration amplitudes. The test model performed elastically up to the seismic excitations representing the earthquakes with a return period of 475 years, and the test model also survived with limited damages under the seismic excitations representing the earthquakes with a return period 2475 years. A finite element model for the prototype structure was further developed and verified. It was noted that the model predictions on dynamic properties and displacement responses agreed reasonably well with test results. The maximum inter-story drift of the tower structure was obtained, and the stress in the steel members was investigated. Results indicated that larger displacement responses were observed for the section from the height of 50 meters to 100 meters in the tower structure. For structural design, applicable measures should be adopted to increase the stiffness and ductility for this section in order to avoid excessive deformations, and to improve the serviceability of the prototype structure.

Understanding of Blast Resistant Design and Performance Evaluation of a Building designed for Conventional Loads (방폭설계의 이해 및 일반하중에 대해 설계된 건축물의 방폭성능 평가)

  • Hong, Jong-Kook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.4
    • /
    • pp.83-90
    • /
    • 2018
  • Considering the increased threats from worldwide terrors and the increased demands on the blast resistant design of commercial buildings, this study is aimed at understanding the basic concept of blast resistant design and evaluating the blast performance with an actual design example. Although there are many differences between earthquake and blast loads, the design concept against both loads is similar in terms of allowing the plastic behavior of a structure and sharing the ductile detailing. Through the blast performance evaluation of a target building provided in this study, it is noted that a well-designed building for the conventional loads can have a certain level of blast resistance. However, this cannot be generalized since the blast load on a structure varies depending on the type of weapon, TNT equivalence, standoff distance, etc. Architectural planning with positioning the sacrificial structure or maintaining a sufficient standoff distance from the expected detonation is the simple and effective way of improving the blast resistance of a building.

Performance Evaluation of Improved Fast PMIPv6-Based Network Mobility for Intelligent Transportation Systems

  • Ryu, Seonggeun;Choi, Ji-Woong;Park, Kyung-Joon
    • Journal of Communications and Networks
    • /
    • v.15 no.2
    • /
    • pp.142-152
    • /
    • 2013
  • The network mobility basic support (NEMO BS) protocol has been investigated to provide Internet connectivity for a group of nodes, which is suitable for intelligent transportation systems (ITS) applications. NEMO BS often increases the traffic load and handover latency because it is designed on the basis of mobile Internet protocol version 6 (MIPv6). Therefore, schemes combining proxy MIPv6 with NEMO (P-NEMO) have emerged to solve these problems. However, these schemes still suffer from packet loss and long handover latency during handover. Fast P-NEMO (FP-NEMO) has emerged to prevent these problems. Although the FP-NEMO accelerates handover, it can cause a serious tunneling burden between the mobile access gateways (MAGs) during handover. This problem becomes more critical as the traffic between the MAGs increases. Therefore, we propose a scheme for designing an improved FP-NEMO (IFP-NEMO) to eliminate the tunneling burden by registering a new address in advance. When the registration is completed before the layer 2 handover, the packets are forwarded to the new MAG directly and thereby the IFP-NEMO avoids the use of the tunnel between the MAGs during handover. For the evaluation of the performance of the IFP-NEMO compared with the FP-NEMO, we develop an analytical framework for fast handovers on the basis of P-NEMO. Finally, we demonstrate that the IFP-NEMO outperforms the FP-NEMO through numerical results.

The Compressed Instruction Set Architecture for the OpenRISC Processor (OpenRISC 프로세서를 위한 압축 명령어 집합 구조)

  • Kim, Dae-Hwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.10
    • /
    • pp.11-23
    • /
    • 2012
  • To achieve efficient code size reduction, this paper proposes a new compressed instruction set architecture for the OpenRISC architecture. The new instructions and their corresponding formats are designed by the profiling information of the existing instruction usage. New 16-bit instructions and 32-bit instructions are proposed to compressed the existing 32-bit instructions and instruction sequences, respectively. The proposed instructions can be classified into three types. The first is the new 16-bit instructions for the frequent normal 32-bit instructions such as add, load, store, branch, and jump instructions. The second type is the new 32-bit instructions for the consecutive two load instructions, two store instructions, and 32-bit data mov instructions. Finally, two new 32-bit instructions are proposed to compress function prolog and epilog code, respectively. OpenRISC hardware decoder is extended to support the new instructions. Experiments show that the efficiency of code size reduction improves by an average of 30.4% when compared to the OR1200 instruction set architecture without loss of execution performance.

Effect of Film-Temperature Boundary Conditions on the Lubrication Performance of Parallel Slider Bearing (유막온도경계조건이 평행 슬라이더 베어링의 윤활성능에 미치는 영향)

  • Park, TaeJo;Kim, MinGyu
    • Tribology and Lubricants
    • /
    • v.33 no.5
    • /
    • pp.207-213
    • /
    • 2017
  • In sliding bearings, viscous friction due to high shear acting on the bearing surface raises the oil temperature. One of the mechanisms responsible for generating the load-carrying capacity in parallel surfaces is known as the viscosity wedge effect. In this paper, we investigate the effect of film-temperature boundary conditions on the thermohydrodynamic (THD) lubrication of parallel slider bearings. For this purpose, the continuity equation, Navier-Stokes equation, and the energy equation with temperature-viscosity-density relations are numerically analyzed using the commercial computational fluid dynamics (CFD) code FLUENT. Two different film-temperature boundary conditions are adopted to investigate the pressure generation mechanism. The temperature and viscosity distributions in the film thickness and flow directions were obtained, and the factors related to the pressure generation in the equation of motion were examined in detail. It was confirmed that the temperature gradients in the film and flow directions contribute heavily to the thermal wedge effect, due to which parallel slider bearing can not only support a considerable load but also reduce the frictional force, and its effect is significantly changed with the film-temperature boundary conditions. The present results can be used as basic data for THD analysis of surface-textured sliding bearings; however, further studies on various film-temperature boundary conditions are required.

Uncertainty Analysis on the Simulations of Runoff and Sediment Using SWAT-CUP (SWAT-CUP을 이용한 유출 및 유사모의 불확실성 분석)

  • Kim, Minho;Heo, Tae-Young;Chung, Sewoong
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.5
    • /
    • pp.681-690
    • /
    • 2013
  • Watershed models have been increasingly used to support an integrated management of land and water, non-point source pollutants, and implement total daily maximum load policy. However, these models demand a great amount of input data, process parameters, a proper calibration, and sometimes result in significant uncertainty in the simulation results. For this reason, uncertainty analysis is necessary to minimize the risk in the use of the models for an important decision making. The objectives of this study were to evaluate three different uncertainty analysis algorithms (SUFI-2: Sequential Uncertainty Fitting-Ver.2, GLUE: Generalized Likelihood Uncertainty Estimation, ParaSol: Parameter Solution) that used to analyze the sensitivity of the SWAT(Soil and Water Assessment Tool) parameters and auto-calibration in a watershed, evaluate the uncertainties on the simulations of runoff and sediment load, and suggest alternatives to reduce the uncertainty. The results confirmed that the parameters which are most sensitive to runoff and sediment simulations were consistent in three algorithms although the order of importance is slightly different. In addition, there was no significant difference in the performance of auto-calibration results for runoff simulations. On the other hand, sediment calibration results showed less modeling efficiency compared to runoff simulations, which is probably due to the lack of measurement data. It is obvious that the parameter uncertainty in the sediment simulation is much grater than that in the runoff simulation. To decrease the uncertainty of SWAT simulations, it is recommended to estimate feasible ranges of model parameters, and obtain sufficient and reliable measurement data for the study site.

Experiment on the Charging and Discharging Processes of a Closed Ice-Thermal-Energy-Storage System (밀폐식 빙축열시스템의 축열 및 방열과정에 관한 실험)

  • Kim, Kyung-Hwan;Yoon, Young-Hwan;Kim, Yeon-Kyu
    • Journal of Energy Engineering
    • /
    • v.16 no.4
    • /
    • pp.164-169
    • /
    • 2007
  • The decrease in the summer peak electric load in our country is very important. The government has arranged and implemented a lot of support policies and statutes to decrease the peak electric load. And the ice-thermal-energy-storage system is known as one of the alternatives. The purpose of this paper is to evaluate the performance and the total efficiency of its storage tank, conducting the charging operation, the parallel operation and the single operation of a storage tank. The thermal energy density stored and discharging efficiency of a storage tank and the efficiency of total energy utilization of system are $18.4\;USRT-h/m^3$, 96.2% and 2028.7 kcal/kWh under the operation of design condition. When the storage tank is supplied more ice thermal energy than design condition, it is estimated that the efficiency of system are lower than the design condition by the supercooled effect.

Seismic Behavior of H shaped Beam to Square Column Connection with Outer Diaphragm Using Field Welding (외측 다이아프램을 사용한 현장 용접형 각형강관기둥-H형강보 접합부의 이력거동)

  • Seo, Seong Yeon;Jung, Jin Ahn;Choi, Sung Mo;Kim, Sung Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.4 s.77
    • /
    • pp.459-467
    • /
    • 2005
  • This study focuses on the development of a new method of H-shaped beam-to-square column connection with an outer diaphragm and a field welding. The specific type of beam-to-column connection with an external stiffener, using field welding, is proposed. The structural behavior of this connection was examined experimentally. Two loading type tests were conducted under the experimental parameters given as details. First described was the symmetrical loading test, which supported both ends or a beam simply and applied a load from the column to the pend (What does this mean?) to investigate a fundamental characteristic of this connection. Further described was the anti-symmetrical loading test, which carried out simple support of the column'stop end and the column base, and applied a load from both ends of a beam to investigate the structural performance of this connection. From the results, it is clear that the external- stiffener-type connection proposed in this paper is the reliable connection method.

Residual capacity assessment of in-service concrete box-girder bridges considering traffic growth and structural deterioration

  • Yuanyuan Liu;Junyong Zhou;Jianxu Su;Junping Zhang
    • Structural Engineering and Mechanics
    • /
    • v.85 no.4
    • /
    • pp.531-543
    • /
    • 2023
  • The existing concrete bridges are time-varying working systems, where the maintenance strategy should be planned according to the time-varying performance of the bridge. This work proposes a time-dependent residual capacity assessment procedure, which considers the non-stationary bridge load effects under growing traffic and non-stationary structural deterioration owing to material degradations. Lifetime bridge load effects under traffic growth are predicated by the non-stationary peaks-over-threshold (POT) method using time-dependent generalized Pareto distribution (GPD) models. The non-stationary structural resistance owing to material degradation is modeled by incorporating the Gamma deterioration process and field inspection data. A three-span continuous box-girder bridge is illustrated as an example to demonstrate the application of the proposed procedure, and the time-varying reliability indexes of the bridge girder are calculated. The accuracy of the proposed non-stationary POT method is verified through numerical examples, where the shape parameter of the time-varying GPD model is constant but the threshold and scale parameters are polynomial functions increasing with time. The case study illustrates that the residual flexural capacities show a degradation trend from a slow decrease to an accelerated decrease under traffic growth and material degradation. The reliability index for the mid-span cross-section reduces from 4.91 to 4.55 after being in service for 100 years, and the value is from 4.96 to 4.75 for the mid-support cross-section. The studied bridge shows no safety risk under traffic growth and structural deterioration owing to its high design safety reserve. However, applying the proposed numerical approach to analyze the degradation of residual bearing capacity for bridge structures with low safety reserves is of great significance for management and maintenance.